Skip to main content

Failure Mechanisms of GaAs MESFETs and Low-Noise HEMTs

  • Chapter
Semiconductor Device Reliability

Part of the book series: NATO ASI Series ((NSSE,volume 175))

Abstract

Reliability of low and medium power GaAs MESFETs has been evaluated by means of a comprehensive test plan, performed mainly on commercially purchased devices manufactured by different technologies. Main failure mechanisms identified are related to gate metallization and Schottky contacts (metal/GaAs interdiffusion, gate electromigration), ohmic contact degradation (increase of contact resistance, drain/source electromigration), surface effects and high humidity effects. Reliability of low noise HEMTs of different suppliers and technologies has been evaluated by thermal storage at 250 °C. Degradation appears to be dominated for shorter times (<500 hours) by interdiffusion/interfacial effects which affect the Schottky contact and/or cause variations in the 2-DEG concentration, with consequent degradation of Idss and Vp. For longer times (>500 hours) increase in Rs and Rd takes place, which gives raise to an increase in RL and is possibly due to ohmic contacts degradation.

Work partially supported by CNR, Progetto Finalizzato Materiali e Dispositivi per l’Elettronica a Stato Solido.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fukui, S. H. Wemple, J. C. Irvin, W. C. Niehaus, J. C. M. Hwang, H. M. Cox, w. O. Schlosser and J. V. DiLorenzo, “Reliability of improved power GaAs field-effect transistors”, IEEE Int. El. Dev. Meeting 1980, p. 151–158.

    Google Scholar 

  2. J. E. Davey and A. Christou, “Reliability and degradation of active III-V semiconductor devices”, Chapt. 5 in M.J. Howes and D. V. Morgan (eds), Reliability and Degradation, Wiley and Sons, New York, 1981, pp. 237–300.

    Google Scholar 

  3. J. C. Irvin and A. Loya, “Failure mechanisms and reliability of low-noise GaAs FET’s”, Bell Syst. Tech. Jour., 57, 2823–2846, 1978.

    Google Scholar 

  4. A. Christou, “Reliability problems in state-of-the-art GaAs devices and circuits”, Quality and Reliability Engeneering International, Vol.5, pp.37–46, 1989

    Article  Google Scholar 

  5. T. Irie, I. Nagasako, H. Kohzu and K. Sekido, “Reliability study of power GaAs MESFETs”, IEEE Trans. on Microw. Theory and Tech., MTT-24, 321–328, 1976.

    Google Scholar 

  6. I. Drukier and J. F. Silcox, “On the reliability of power GaAs FET’s”, IEEE Int. Rel. Phys. Symp., p. 150–155, 1979.

    Google Scholar 

  7. S. H. Wemple, W. C. Niehaus, H. Fukui, J. C. Irvin, H. M. Cox, J. C. M. Hwang, J. V. DiLorenzo and W.O. Schlosser, “Long term and instantaneous burn-out in GaAs power FET’s: Mechanisms and solutions”, IEEE Trans. on El. Dev., ED-28, 834–840, 1981.

    Google Scholar 

  8. F.A. Buot, W.T. Anderson, A. Christou, A.B. Campbell and A. R. Knudson, “Subsurface burnout in field effect transistors”, J. Appl. Phys., 57, pp.581–593 (1985)

    Article  Google Scholar 

  9. J. M. Dumas, D. Lecrosnier and J. F. Bresse, “Analysis of surface-induced degradation of GaAs power MESFETs”, IEEE El. Dev. Lett., EDL-6, 192–194, 1985.

    Google Scholar 

  10. S. Sriram, M. Das, “An experimental study of backgating effects in GaAs MESFETs”, Solid-State Electronics, vol.28, pp.979–989, 1985

    Article  Google Scholar 

  11. C. Canali, F. Fantini, A. Scorzoni, L. Umena, E. Zanoni, “Degradation mechanisms induced by High Current Density in Al-gate GaAs MESFETs”, IEEE Trans. on El. Dev., ED-34 (2) p. 205–211, 1987.

    Article  Google Scholar 

  12. C. Canali, L. Umena, F. Fantini, A. Scorzoni, E. Zanoni, “Increase in barrier height of Al/n-GaAs contacts induced by high current”, IEEE El. Dev. Lett., EDL-7, 291–293, 1986.

    Article  Google Scholar 

  13. C. Canali, F. Castaldo, F. Fantini, D. Ogliari, L. Umena and E. Zanoni, “Gate metallization “sinking” into the active channel in Ti/W/Au metallized power MESFETs”, IEEE El. Dev. Lett., EDL-7, 185–187, 1986.

    Google Scholar 

  14. W.T. Anderson, D.V Morgan, F.A. Buot, A. Christou, “Subsurface burnout mechanisms in Gallium Arsenide (GaAs) electronic devices”, Quality and Reliability Eng. Int., vol.4, pp.255–268, 1988

    Article  Google Scholar 

  15. Goronkin, S. Tehrani, T. Remmel, P.L. Fejes and K.J. Johnson, “Ohmic Contact Penetration and Encroachment in GaAs/AlGaAs and GaAs FET’s”, IEEE Trans. El. Dev., vol. 36, pp. 281–287, 1989

    Article  Google Scholar 

  16. D.W. Langer, A. Ezis and K. Rai, “Structure and lateral diffusion of ohmic contacts in AlGaAs/GaAs high electron mobility transistors and GaAs devices”, J. Vac. Sci. Technol., vol.5, pp.1030–1032, 1987

    Article  Google Scholar 

  17. A. Ezis, A.K. Rai and D.W. Langer, “Lateral protrusions of ohmic contacts to AlGaAs/GaAs MODFET material”, Electronics Letters,Vol. 23, pp.113–114, 1987

    Article  Google Scholar 

  18. A. Christou and N. Papanicolau, “Redistribution of Aluminum in MODFET ohmic contacts”, Solid State Electronics,Vol.29, pp.189–192, 1986

    Article  Google Scholar 

  19. A. Christou, T. Efthimiopoulos and Z. Hatsopoulos, “Ohmic contact control in modulation-doped gallium arsenide field-effect transistors”, Appl. Phys.Lett., vol. 49, pp.1077–1079,1986

    Article  Google Scholar 

  20. A. Belhadj, J.M. Dumas, C. Vuchener, P. Audren and J. Paugam, “Study of failure mechanisms of GaAs-AlGaAs Field Effect Transistors with modulated doping”, 6 international conference on reliability and maintainability, Strasbourg France, pp. 229–232,1988

    Google Scholar 

  21. W.T. Anderson, A. Christou, F.A. Buot, J. Archer, G. Bechtel, H. Cooke, Y.C. Pao, M. Simons and E.W. Chase, “Reliability of discrete MODFET’s: life testing, radiation effects and ESD”, Proc. of the IEEE Int. Rel. Physics Symp. 1988, pp.96–101.

    Google Scholar 

  22. A. Christou, W. Tseng, M. Peckerar, W.T. Anderson, D.M. McCarthy, F.A. Buot, A.B. Campbell and A.R. Knudson, “Failure mechanism study of GaAs modfet devices and integrated circuits”, Proc. of the IEEE Int. Rel. Physics Symp. 1985, pp. 54–59,

    Google Scholar 

  23. K. Hayashi, T. Sonoda, T. Yamaguchi, K. Nagahama, M. Yamanouchi, S. Takamiya and S. Mitsui, “Reliability of super low noise HEMTs”, IEEE Microwave Theory and Tech., pp. 1023–1026,1988

    Google Scholar 

  24. D.V. Morgan, A. Christou, D. Diskett, G.M. Gauneau, “Thermal stability of heterojunction in GaAs/AlGaAs structures”, Electronics Letters, Vol.24, pp.1549–1550, 1980

    Article  Google Scholar 

  25. J. Lee and E. Schlesinger, “Interdiffusion of (Al,Ga)As/GaAs superlattices”, J. Vac. Sci. Technol., pp. 1187–1190, 1987

    Google Scholar 

  26. A. Christou and N. Papanicolau, “Redistribution of Aluminum in MODFET ohmic contacts”, Solid State Electronics, Vol.29, pp.189–192, 1986

    Article  Google Scholar 

  27. A. Thomasian, A.A. Rezazadeh and L.G. Hipwood, “Observation and Mechanism of Kink Effect in Depletion-Mode AlGaAs/GaAs and AlGaAs/GaInAs HEMTs”, Electronics Letters, Vol.25, pp. 351–353, 1989

    Article  Google Scholar 

  28. H. Fukui, “Determination of the basic device parameters of a GaAs MESFET”, Bell Syst. Tech. J., 58 (3), pp. 771–797, 1979.

    Google Scholar 

  29. K. W. Lee, M. S. Shur, K. Lee, T.T. Vu, P. C. T. Roberts, and M. J. Helix, “Low field mobility in GaAs Ion-Implanted FET’s”, IEEE Trans. on El. Dev., ED-31, pp. 390–393, 1984.

    Google Scholar 

  30. S. Chaudhuri, M. B. Das, “An investigation of the MESFET “end” resistance using a distributed diode/resistance model”, IEEE Trans. on El. Dev., ED-32, pp. 2262–2268, 1985.

    Google Scholar 

  31. K. W. Lee, K. Lee; M. S. Shur, T.T. Vu, P. C.T. Roberts, M. J. Helix, “Source, drain, and gate series resistances and electron saturation velocity in Ion-Implanted GaAs FET’s”, IEEE Trans. on El. Dev., ED-32, pp. 987–992, 1985 and Errata in ED-33, p. 429, 1986.

    Google Scholar 

  32. R. P. Holmstrom, W.L. Bloss, J. Y. Chi, “A gate probe method of determining parasitic resistance in MESFETs”, IEEE El. Dev. Lettrs., EDL-7, pp. 410–412, 1986.

    Google Scholar 

  33. W. Shockley, “A unipolar Field-Effect-Transistor”, Proc. IRE, 40, p. 1365–1376, 1952.

    Article  Google Scholar 

  34. Y. H. Byun, M. S. Shur, A. Peczalski, F.L. Schvermayer, “Gate-voltage dependance of source and drain series resistances and effective gate length in GaAs MESFETs”, IEEE Trans. on El. Dev., ED-35, pp. 1241–1246, 1988.

    Article  Google Scholar 

  35. K. Lee, M.S. Shur, A.J. Valois, G.Y. Robinson, X.C. Zhu and A.V.D. Ziel, “A new technique for Characterization of the “end” Resistance in Modulation-Doped FET’s”, IEEE Trans. El. Dev., 31,pp.1394–1398,1984

    Article  Google Scholar 

  36. C. Chen, S.M. Baier, D.K. Arch and M.S. Shur, “A New and Simple Model for GaAs Heterojunction FET Gate Characteristics”, IEEE Trans. on El. Dev., ED 35, pp.570–577, 1988

    Article  Google Scholar 

  37. A. Eskandarian, “Determination of the small-signal parameters of an AlGaAs/GaAs Modfet”, IEEE Trans. El.Dev., ED 35, pp.1793–1801,1988

    Article  Google Scholar 

  38. S.J. Liu, S. Fu, M. Thurairaj and M.B. Das, “Determination of Source and Drain Series Resistances of Ultra-Short Gate-Length MODFET’s”, IEEE El. Dev. Letters, vol.EDL 10, No.2, pp.85–87,1989

    Article  Google Scholar 

  39. S. H. Wemple, H. Huang, “Thermal design of power GaAs FET’s”, in J. V. DiLorenzo, D.D. Khandelwal (Eds.), “GaAs FET principles and technologies”, Artech House, Dedham (MA), 1982, pp. 313–347.

    Google Scholar 

  40. H. Fukui, “Thermal resistance of GaAs Field-Effect Transistors”, IEEE Int. Electron Dev. Meet. 1980, pp. 118–121.

    Google Scholar 

  41. P. W. Webb, “Measurement of thermal resistance using electrical methods”, IEE Proc. Part I, 34 (2), pp. 51–56, 1987.

    Google Scholar 

  42. C.E. Stephens, E.N. Sinnadurai, “A surface temperature limit detector using nematic liquid crystals with an application to microcircuits”, J. Appl. Phys. E, Sci. Instr., vol. 7, pp. 641–643, 1974.

    Article  Google Scholar 

  43. C. Canali, F. Chiussi, G. Donzelli, F. Magistrali, M. Merletti, E. Zanoni, “Correlation between thermal resistance, channel temperature, infrared thermal maps and failure mechanisms in low power MESFET devices”, to be published in Microelectronics and Reliability.

    Google Scholar 

  44. C. Canali, F. Chiussi, G. Donzelli, F. Magistrali, M. Merletti, E. Zanoni, “Correlation between fabrication processes and thermal distribution in medium power MESFETs”, to be published in Microelectronics and Reliability.

    Google Scholar 

  45. D. V. Morgan, “Interdiffusion of metal films on gallium arsenide and indium phosphide”, Chapter 3 in M.J. Howes and D. V. Morgan (eds), Reliability and Degradation, Wiley and Sons, New York, 1981, pp. 151–190.

    Google Scholar 

  46. N. M. Johnson, T. J. Magee and J. Peng, “Thermal aging of Al thin films on GaAs”, J. Vac. Sci. and Technol., 13, pp. 838–842, 1976.

    Article  Google Scholar 

  47. J. D. Speight, K. Cooper, “Interlayer diffusion phenomena in Ti-Au metallizations on n-type GaAs at 250 °C –450 °C”, Thin Solid Films, 25, pp. S31–S37, 1975.

    Article  Google Scholar 

  48. J.C. Irvin, “The reliability of GaAs FET’s”, Chapter 6 in J. V. DiLorenzo, D.D. Khandelwal (Eds.), “GaAs FET principles and technologies”, Artech House, Dedham (MA), 1982, pp. 349–402.

    Google Scholar 

  49. A. G. Milnes, “Impurity levels in GaAs”, Adv. Electron. and Electron. Phys., vol. 61, pp. 115–160, 1983.

    Google Scholar 

  50. F. Fantini, F. Magistrali, D. Ogliari, M. Sangalli and M. Vanzi, “Back-Etch: an effective tool for characterization and failure analysis of MESFET devices”, Proc. ISTFA, pp. 235–241, 1988.

    Google Scholar 

  51. J.E. Baker, R.J. Blattner, S. Nadel, C.A. Evans, and R.S. Nowicki, “Thermal annealing study of Au/Ti-W metallization on silicon”, Thin Solid Films, 69, pp. 53–62, 1980.

    Article  Google Scholar 

  52. A.K. Sinha, T.E. Smith, M. H. Read, and J. M. Poate, “n-GaAs Schottky diodes metallized with Ti and Pt/Ti”, Solid-State Electronics, 19, pp. 489–492, 1976.

    Article  Google Scholar 

  53. C. Canali, G. Donzelli, F. Fantini, M. Vanzi, A. Paccagnella, “Gold-based gate-sinking enhanced by inhomogeneities in power MESFETs”, Electronics Letters, 23(2), 1987, pp. 83–84.

    Article  Google Scholar 

  54. O. Wada, S. Yanagisawa and H. Takanashi, “Thermal reaction of Ti evaporated on GaAs”, Applied Phys. Lettrs., 29 (14), 1976, pp. 263–265.

    Article  Google Scholar 

  55. Y. Wada and K. Chino, “Schottky barrier height variation with metallurgical reactions in Aluminum-Titanium-Gallium Arsenide contacts”, Solid-state Electronics, 26 (6), pp. 559–564, 1983.

    Article  Google Scholar 

  56. M. Kniffin and C. R. Helms, “Study of the structure and properties of Ti/GaAs interface”, J. vac. Sci. Technol., A5, pp. 1511–1515, 1987.

    Google Scholar 

  57. K. Kim, M. Kniffin, R. Sinclair, C. R. Helms, “Interfacial reactions in the Ti/GaAs system”, J. Vac. Sci. and Technol., A6, pp. 1473–1477, 1988.

    Google Scholar 

  58. A. Christou, “Interdiffusion in Au-refractory thin film systems studied by a combination of scattering techniques”, Scanning Electron Microscopy, 1, pp. 191–201, 1979.

    Google Scholar 

  59. J. Wurfl, H.L Hartnagel, “Thermal stability and degradation mechanisms of Ti-Pt-Au, Ti-W-Au and WSi2-Ti-Pt-Au Schottky contacts on GaAs”, 4th Int. Conf. Quality in electronic components, Bordeaux 1989,pp.133–138

    Google Scholar 

  60. H. M. Day, A. Christou and A. C. Macpherson, “Interdiffusion and Schottky barrier height variation in Au-W(Ti)/n-GaAs contacts”, J. Vac. Sci. Technol., 14, pp. 939–942, 1977.

    Article  Google Scholar 

  61. D. A. Allen, “Stability of Schottky barrier at high temperature for use in GaAs MESFET technology”, IEE Proc. Part I, 133, pp. 18–24, 1986.

    Google Scholar 

  62. D. Ogbonnah and A. Fraser, “Reliability investigation of 1 micron depletion mode IC MESFETs”, IEEE Int. Rel. Phys. Symp., pp. 132–138, 1986.

    Google Scholar 

  63. L. S. Bowman and W. Tariv, “Failure mechanisms study of GaAs technology”, Report RADC-TR-81–180 (1980).

    Google Scholar 

  64. M. Benedek and B. S. Hewitt, “A comparative reliability study: Aluminum gate vs. gold gate GaAs MESFETs”, IEEE Int. El. Dev. Meet., pp. 385–388, 1978.

    Google Scholar 

  65. G. Donzelli, A. Paccagnella, “Degradation mechanism of Ti/Au and Ti/Pd/Au gate metallizations in GaAs MESFETs”, IEEE Trans. on El. Dev., ED-34 (5), pp. 957–960, 1987.

    Article  Google Scholar 

  66. M. Omori, J. N. Wholey, “Accelerated active life test of GaAs FET and a new failure mode”, IEEE Int. Rel. Phys. Symp., pp. 134–139, 1980.

    Google Scholar 

  67. H. Fukui, S. H. Wemple, J. C. Irvin, W. C. Niehaus, J. C. M. Hwang, H. M. Cox, W. O. Schlosser and J. V. DiLorenzo, “Reliability of power GaAs Field Effect Transistors”, IEEE Trans. on El. Dev., ED-29, pp. 395–401, 1982.

    Article  Google Scholar 

  68. W. J. Slusark, G. L. Schnable, V. R. Monshaw, M. Fukuta, “Reliability of Aluminum-gate metallization in GaAs power FET’s”, IEEE Int. Rel. Phys. Symp., pp. 211–217, 1983.

    Google Scholar 

  69. S. Kashiwagi, S. Takase, T. Usui, T. Ohono, “Reliability of high frequency high power GaAs MESFETs”, IEEE 25th Int. Rel. Phys. Symp., pp. 97–101, 1987.

    Google Scholar 

  70. S. M. Sze, “Physics of Semiconductor Devices”, 2nd Ed., New York, Wiley, 1981.

    Google Scholar 

  71. A. Christou and H. M. Day, “Low temperature interdiffusion between aluminum thin films and GaAs”, J. Appl. Phys., 47, pp. 4217–4219, 1976.

    Article  Google Scholar 

  72. S. D. Mukherjee, D. V. Morgan, M. J. Howes, J. C. Smith and P. Brook, “Reactions of vacuum-deposited thin Schottky barrier metallization and gallium arsenide”, J. Vac. Sci. Technol., 16, pp. 138–140, 1979.

    Article  Google Scholar 

  73. A. K. Srivastava and B. M. Arora, “Effect of annealing on the Richardson constant of Al/GaAs Schottky diodes”, Solid-State Electronics, 24, pp. 1049–1052, 1981.

    Article  Google Scholar 

  74. G. P. Schwartz and A. Y. Cho, “Chemical reaction at the Al-GaAs interface”, J. Vac. Sci. Technol. 19, pp. 607–610, 1981.

    Article  Google Scholar 

  75. S. P. Svensson, G. Lundgren, and T. G. Anderson, “Al-GaAs (001) Schottky barrier formation”, J. Appl. Phys., 54, pp. 4474–4481, 1983.

    Article  Google Scholar 

  76. N. Newman, K. K. Chiu, W. G. Petro, T. Kendelewicz, M. D. Williams, C. E. McCants and W. E. Spicer, “Annealing of intimate Ag, Al, and Au-GaAs Schottky barriers”, J. Vac. Sci. Technol., A3, pp. 996–1001, 1985.

    Google Scholar 

  77. A. Miret, N. Newman, E. R. Weber, J. Washburn, W. E. Spicer, “Aging of Schottky diodes formed on air-exposed and atomically clean GaAs surfaces: an electrical study”, J. Appl. Phys., 63, pp. 2006–2010, 1988.

    Article  Google Scholar 

  78. P. M. White, G. C. Roger, B. S. Hewitt, “Reliability of Ku-band GaAs power FET’sunder highly stressed RF operation”, IEEE Int. Rel. Phys. Symp., 1983, pp. 297–301.

    Google Scholar 

  79. E. D. Cohen, A. C. Macpherson, “Reliability of goldmetallized commercially available power GaAs FET’s”, IEEE Int. Rel. Phys. Symp., 1979, pp. 156–160.

    Google Scholar 

  80. B. Dornan, W. Slusark, Y. S. Wu, P. Pelka, R. Barton, H. Wolkstein and H. Huang, “A 4 GHz GaAs FET power amplifier: An advanced transmitter for satellite down-link communication systems”, RCA Rev., 41, pp. 474–513, 1980.

    Google Scholar 

  81. M. Otsubo, Y. Mitsui, M. Nakatani and H. Wataze, “Degradation of GaAs power MESFETs due to light emission”, IEEE Int. El. Dev. Meet., pp. 114–117, 1980.

    Google Scholar 

  82. V. Singh and P. Swarup, “Early gate failures in biased GaAs Field Effect Transistor from electromigration-induced damage superimposed on Kirkendall voids”, Thin Solid Films, 97, pp. 277–286, 1982.

    Article  Google Scholar 

  83. G. M. Brydon, B. G. Caplen, “Reliability evolution of Plessey low noise Gallium Arsenide Field Effect Transistors”, IEEE Int. Rel. Phys. Symp., 1983, pp. 302–311.

    Google Scholar 

  84. K. Katsukawa, Y. Kose, M. Kanamori, and S. Sando, “Reliability of gate metallization in power GaAs MESFETs”, Int. Rel. Phys. Symp., 1984, pp. 59–62.

    Google Scholar 

  85. T. Kwok, “Effect of metal line geometry on electromigration lifetime in Al-Cu submicron interconnects”, Proc. IEEE IRPS 1988, pp. 185–191.

    Google Scholar 

  86. B. R. Sethy and H. L. Hartnagel, “Characterization of electromigration damage in current-stressed Al gates as used for GaAs MESFETs”, J. Phys. D: Appl. Phys., 18, L9–L13, 1985.

    Article  Google Scholar 

  87. M. N. Yoder, “Ohmic contacts in GaAs”, Solid-State Electronics, 23, pp. 117–119, 1980.

    Article  Google Scholar 

  88. M. Ogawa, “Alloying behaviour of Ni/Au-Ge films on GaAs”, J. Appl. Phys., 51 (1), pp. 406–412, 1980.

    Article  Google Scholar 

  89. C. P. Lee, B. M. Welch, W. P. Fleming, “Reliability of AuGe/Pt and AuGe/Ni ohmic contacts on GaAs”, Electronics Letters, 17 (12), pp. 407–408, 1981.

    Article  Google Scholar 

  90. J. G. Werthen, D. R. Scifres, “Ohmic contacts to n-GaAs using low temperature anneal”, J. Appl. Phys., 52 (2), pp. 1127–1129, 1981.

    Article  Google Scholar 

  91. G. S. Marlow, M. B. Das, L. Tongson, “The characteristics of Au-Ge based ohmic contacts to n-GaAs including the effects of aging”, Solid-State Electronics, 26 (4), pp. 259–266, 1983.

    Article  Google Scholar 

  92. T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs”, J. Appl. Phys. 54 (12), pp. 6952–6957, 1983.

    Article  Google Scholar 

  93. A. Iliadis, K. E. Singer, “Metallurgical behaviour of Ni/Au-Ge ohmic contacts to GaAs”, Solid State Communications, 49 (1), pp. 99–101, 1984.

    Article  Google Scholar 

  94. A. Callegari, E.T.-S. Pan, M. Murakami, “Uniform and thermally stable AuGeNi ohmic contacts to GaAs”, Appl. Phys. Lett., 46 (12), pp. 1141–1143, 1985.

    Article  Google Scholar 

  95. Y.-C. Shih, M. Murakami, E. L. Wilkie, A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs”, J. Appl. Phys., 62 (2), pp. 582–590, 1987.

    Article  Google Scholar 

  96. J.F. Bresse, “Reliability of the structure Au/Cr/Au-Ge/Ni/GaAs in low noise dual gate GaAs FET”, Microel. Reliab. 25(3), 1985, pp. 411–424.

    Article  Google Scholar 

  97. D. A. Abbott, J. A. Turner, “Some aspects of GaAs MESFET reliability”, IEEE Trans. on Microwave Theory and Tech., MTT-24 (6), pp. 317–321, 1976.

    Article  Google Scholar 

  98. R. E. Lundgren and G. O. Ladd, “Reliability study of microwave GaAs Field Effect Transistors”, 16th IEEE Int. Rel. Phys. Symp., pp. 255–260, 1978.

    Google Scholar 

  99. K. Mizuishi, H. Kurono, H. Sato, H. Kodera, “Degradation mechanism of GaAs MESFETs”, IEEE Trans. on El. Dev., ED-26 (7), pp. 1008–1014, 1979.

    Article  Google Scholar 

  100. A. Christou, E. Cohen and A. C. Macpherson, “Failure modes in GaAs power FET’s: ohmic contact electromigration and formation of refractory oxides”, IEEE 19th Int. Rel. Phys. Symp. pp. 182–187, 1981.

    Google Scholar 

  101. F. Wilhelmsen, I. Zee, “Effect of electromigration on GaAs FET reliability”, Proc. ISTFA 1984, pp. 163–169, 1984.

    Google Scholar 

  102. W.T. Anderson, A Christou and K.J. Sieger, “Ionic Contamination-Humidity Effects on GaAs FETs”, 17th Annual Proc. Rel. Phisics Symp., pp.127–132,1979

    Google Scholar 

  103. M. Spector and G.A. Dodson, “Reliability Evaluation of GaAs IC pre-amplifier HIC”, GaAs IC Symposium, pp.19–21, 1987

    Google Scholar 

  104. E. Brambilla, P. Brambilla, C. Canali, F. Fantini and M. Vanzi, “Anodic gold corrosion in plastic encapsulated devices”, Microelectronics and Reilability,vol. 23, pp.577–585, 1987

    Article  Google Scholar 

  105. S. Igi, T. Suzuki, K. Mitsui, K. Miyamoto, M. Shimodaira and S. Kuboyama, “The effects of the passivation film on the reliability of high power GaAs MESFETs” Int. Symp. for Testing and Failure Analysis,pp.302–310,1983

    Google Scholar 

  106. J. M. Dumas, F. Garat, D. Lecrosnier, “Development of gate-lag effect on GaAs power MESFETs during aging”, El. Lettrs., 23, pp. 139–141, 1987.

    Article  Google Scholar 

  107. M. Rocchi,“Status of the surface and bulk parasitic effects limiting the performances of GaAs IC’s”, Proc. ESSDERC 85, J.P. Noblanc and J. Zimmermann, eds., North-Holland, Amsterdam 1985, pp. 119–138.

    Google Scholar 

  108. P.H. Ladbrooke and S.R. Blight, “Low-Field Low-Mobility Dispersion of Transconductance in GaAs MESFETs with Implication for other Rate-Dependent Anomalies”, IEEE Trans. Electron Devices, vol. ED 35, n. 3, pp. 257–267, 1988.

    Article  Google Scholar 

  109. J. Graffeuil, Z. Hadjoub, J.P. Fortea, and M. Ponysegur, “Analysis of capacitance and transduxtance frequency dispersion in MESFETs for surface characterization”, Solid-St. Electronics, vol. 29, pp. 1087–1097, 1986.

    Article  Google Scholar 

  110. M. Ozeki, K. Kodama, and A. Shibatomi, “Surface analysis of GaAs MESFETs by gm frequency-dispersion measurement of transconductance”, Fujitsu Sci. Tech. J., vol. 18, pp. 475–486, 1982

    Google Scholar 

  111. C. D. Thurmond, G. P. Schwarz, G. W. kammlott, B. Schwartz, “GaAs oxidation and the Ga-As-O equlibrium phase diagram”, J. Electrochem. Soc., 127, pp. 1366–1371, 1980.

    Article  Google Scholar 

  112. F. Capasso, G. F. Williams, “A proposed hydrogenation/nitridization passivation mechanism for GaAs and other III-V semiconductor devices, including InGaAs long wavelength photodetectors”, J. Electrochem. Soc, 129, pp. 821–824, 1982.

    Article  Google Scholar 

  113. J. J. Whalen, M. C. Calcaterra, M. L. Thorn, “Microwave nanosecond pulse burnout properties of GaAs MESFETs”, IEEE Trans. on Microw. Theory and Tech., 27, pp. 1026–1031, 1979.

    Article  Google Scholar 

  114. J. Dell, T. S. Kalkur, Z. Meglicki, A. G. Nassibian, H. L. Hartnagel, “Au-Ge-Ni migration affected by operating conditions of GaAs FETs”, Solid State Electronics, 27, pp. 447–452, 1984.

    Article  Google Scholar 

  115. K. H. Kretschmer, H. L. Hartnagel, “XPS-analysis of GaAs surface quality affecting interelectrode material migration”, 23rd Ann. Proc. IEEE Int. Rel. Phys. Symp., pp. 48–58, 1985.

    Google Scholar 

  116. K. H. Kretschmer, H. L. Hartnagel, “Interelectrode metal migration on GaAs”, 25th Ann. Proc. IEEE Int. Rel. Phys. Symp., pp. 102–106, 1987.

    Google Scholar 

  117. S. H. Wemple, W. C. Niehaus, H. Fukui, J. C. Kevin, H. M. Cox, J. C. M. Hwang, J. V. DiLorenzo, W. O. Schlosser, “Long term and instantaneous burnout in GaAs power FET’s: Mechanisms and Solutions”, IEEE Trans. on El. Dev., ED-28, pp. 834–840, 1981.

    Article  Google Scholar 

  118. S. Loualiche, V. Parguel, H. L’Haridon, L. Henry, C. Vaudry, “InGaAs photoconductor failure observation”, El. Lettrs., 21, pp. 1101–1102, 1985.

    Article  Google Scholar 

  119. A.A. Imorlica jr., J.R. Michener, “High Voltage screening of GaAs power FET’s: effect of burn-in yield and modes of catastrophic device failure”, 23rd Ann. Proc. IEEE Int. Rel. Phys. Symp., pp. 49–53, 1985.

    Google Scholar 

  120. W. R. Curtice, “A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers”, IEEE Trans. on Micr. Theory and Tech., 33, pp. 1383–1393, 1985.

    Article  Google Scholar 

  121. W. T. Anderson, F. A. Buot, A. Christou, “High power pulse reliability of GaAs power FET’s”, 24th Ann. Proc. Int. Reliab. Phys. Symp., pp. 144–149, 1986.

    Google Scholar 

  122. S. H. Wemple, W. C. Niehaus, H. Fukui, J. C. Irvin, H. M. Cox, J.C.M. Hwang, J. V. DiLorenzo, W. O. Schlosser, “Long-term and instantaneous burnout in GaAs power FET’s: mechanisms and solutions”, IEEE Trans. on El. Dev., ED-28 (7), pp. 834–840, 1981.

    Article  Google Scholar 

  123. J. M. Dumas, D. Lecrosnier, J. Paugam, C. Vuchener, “Comparative reliability study of GaAs power MESFET’S: mechanisms for surface-induced degradation and a reliable solution”, El. Lettrs., 21 (3), pp. 115–116, 1985.

    Article  Google Scholar 

  124. J. M. Dumas, D. Lecrosnier, J. F. Bresse, “Investigation into GaAs power MESFET surface degradation”, 23rd Ann. Proc. IEEE Int. Rel. Phys. Symp., pp. 39–44, 1985.

    Google Scholar 

  125. C. P. Lee, S. J. Lee, B. M. Welch, “Carrier injection and backgating effect in GaAs MESFETs”, IEEE El. Dev. Lettrs., EDL-3 (4), pp. 97–98, 1982.

    Article  Google Scholar 

  126. C. Kocot, C. A. Stoltz, “Backgating in GaAs MESFETs”, IEEE Trans. on El. Dev., ED-29 (7), pp. 1059–1064, 1982.

    Article  Google Scholar 

  127. A. Paccagnella, C. Canali, G. Donzelli, E. Zanoni, R. Zanetti, S.S. Lau “Non-alloyed Ge/Pd ohmic contact for GaAsx MESFETs”, Proc. ESSDERC ’88, in Jour. de Physique Colloque C4, suppl. au no. 9, 49, pp. 441–444, 1988.

    Google Scholar 

  128. M. Murakami, Y.-C. Shin, W.H. Price, E.L. Wilkie, “Thermally stable ohmic contacts to n-type GaAs. III. GeInW and NiInW contact metals”, J. Appl. Phys., vol. 64(4), pp. 1974–1982, 1988 and references therein.

    Article  Google Scholar 

  129. A. Belhadj, P. Audren, J.M. Dumas, S. Motter, J. Pangam, C. Vuchener, “Experimental study of functional parasitic effects of MODFETs in integrated circuits”, 4th International Conference Quality and Electronic Components, Bordeaux 1989, pp.128–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Magistrali, F., Tedesco, C., Zanoni, E. (1990). Failure Mechanisms of GaAs MESFETs and Low-Noise HEMTs. In: Christou, A., Unger, B.A. (eds) Semiconductor Device Reliability. NATO ASI Series, vol 175. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2482-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2482-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7620-3

  • Online ISBN: 978-94-009-2482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics