Skip to main content

Philosophy and the Sciences

  • Chapter
Acting and Reflecting

Part of the book series: Synthese Library ((SYLI,volume 211))

Abstract

The great tradition in philosophy, from Aristotle to Kant, was that philosophy legislated the methodology and foundations of science. It can be claimed that, in spite of the many centuries separating Aristotle and Kant, it is still true that the three most important foundational works on science were Aristotle’s Posterior Analytics, with many points amplified in the Physics and the Metaphysics, Descartes’ Principles of Philosophy, and at the other end of the period the very specific working out of the foundations of physics in Kant’s Metaphysical Foundations of Natural Science, with the more general lines of argument being given in the Critique of Pure Reason. It is not difficult to trace the enormous impact of Kant on physics in the nineteenth century, especially German physics, and also psychology, even though Kant was skeptical of providing the kind of foundations for psychology he gave for physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekseev, V.M. (1969a). “Quasirandom dynamical systems. I. Quasirandom diffeomorphisms,” Mathematicheskie USSR Sbornik, 5, 73–128.

    Article  Google Scholar 

  • Alekseev, V.M. (1969b). “Quasirandom dynamical systems. II. One-dimensional nonlinear oscillations in a field with periodic perturbation,” Mathematicheskie USSR Sbornik, 6, 505–560.

    Article  Google Scholar 

  • Battro, A.M., Netto, S.P., & Rozestraten, R.J.A. (1976). “Riemannian geometries of variable curvature in visual space: Visual alleys, horopters, and triangles in big open fields,” Perception, 5, 9–23.

    Article  Google Scholar 

  • Bell, J.S. (1964). “On the Einstein Podolsky Rosen paradox,” Physics, 1, 195–200.

    Google Scholar 

  • Blank, A.A. (1953). “The Luneburg theory of binocular visual space,” Journal of the Optical Society of America, 43, 717–727.

    Article  Google Scholar 

  • Blank, A.A. (1957). “The geometry of vision,” British Journal of Physiological Optics, 14, 154–169, 213.

    Google Scholar 

  • Blank, A.A. (1958). “Analysis of experiments in binocular space perception,” Journal of the Optical Society of America, 48, 911–925.

    Article  Google Scholar 

  • Blank, A.A. (1961). “Curvature of binocular visual space. An experiment,” Journal of the Optical Society of America, 51, 335–339.

    Article  Google Scholar 

  • Blumenfeld, W. (1913). “Untersuchungen über die scheinbare Grösse in Schraume,” Zeitschrift fur Psychologie und Physiologie der Sinnesorgane, 65, 241–404.

    Google Scholar 

  • Busemann, H. (1955). The geometry of geodesics. New York: Academic Press.

    Google Scholar 

  • Clauser, J.F., Home, M.A., Shimony, A., & Holt, R.A. (1969). “Proposed experiment to test local hidden-variable theories,” Physical Review Letters, 23, 880–884.

    Article  Google Scholar 

  • Cutting, J.E. (1986). Perception with an eye for motion. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Dembowski, P. (1968). Finite geometries. New York: Springer-Verlag.

    Google Scholar 

  • Fine, A. (1982). “Hidden variables, joint probability, and the Bell inequalities,” Physical Review Letters, 48, 291–295.

    Article  Google Scholar 

  • Foley, J.M. (1964a). “Desarguesian property in visual space,” Journal of the Optical Society of America, 54, 684–692.

    Article  Google Scholar 

  • Foley, J.M. (1964b). “Visual space: A test of the constant curvature hypothesis,” Psychonomic Science, 1, 9–10.

    Google Scholar 

  • Foley, J.M. (1972). “The size-distance relation and intrinsic geometry of visual space: Implications for processing,” Vision Research, 13, 323–332.

    Article  Google Scholar 

  • Freudenthal, H. (1965). “Lie groups in the foundations of geometry,” Advances in Mathematics, 1, 145–190.

    Article  Google Scholar 

  • Hardy, L.H., Rand, G., Rittler, M.C., Blank, A.A., & Boeder, P. (1953). The geometry of binocular space perception. Knapp Memorial Laboratories, Institute of Ophthamology, Columbia University College of Physicians and Surgeons.

    Google Scholar 

  • Helmholtz, H. von (1868). “Über die Thatsachen, die der Geometrie zu Grunde liegen,” Göttinger Nachrichten, 9, 193–221.

    Google Scholar 

  • Hillenbrand, F. (1902). “Theorie der scheinbaren Grösse bei binocularem Sehen,” Denkschriften d. Wiener Akademie d. Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 72, 255–307.

    Google Scholar 

  • Holland, P.W., & Rosenbaum, P.R. (1986). “Conditional association and unidimensionality in monotone latent variable models,” The Annals of Statistics, 14, 1523–1543.

    Article  Google Scholar 

  • Indow, T. (1967). “Two interpretations of binocular visual space: Hyperbolic and Euclidean,” Annals of the Japan Association for Philosophy of Science, 3, 51–64.

    Google Scholar 

  • Indow, T. (1968). “Multidimensional mapping of visual space with real and simulated stars,” Perception & Psychophysics, 3, 45–53.

    Article  Google Scholar 

  • Indow, T. (1974). “Applications of multidimensional scaling in perception.” In Handbook of perception, Vol. 2, Psychophysical judgment and measurement (pp. 493–531). New York: Academic Press.

    Google Scholar 

  • Indow, T. (1975). “An application of MDS to study of binocular visual space.” U.S.-Japan Seminar: Theory, methods and applications of multidimensional scaling and related techniques. University of California, August 20–24, San Diego, Calif.

    Google Scholar 

  • Indow, T. (1979). “Alleys in visual space,” Journal of Mathematical Psychology, 19, 221–258.

    Article  Google Scholar 

  • Indow, T. (1982). “An approach to geometry of visual space with no a priori mapping functions: Multidimensional mapping according to Riemannian metrics,” Journal of Mathematical Psychology, 26, 204–236.

    Article  Google Scholar 

  • Indow, T., Inoue, E., & Matsushima, K. (1962a). “An experimental study of the Luneburg theory of binocular space perception (1). The 3- and 4-point experiments,” Japanese Psychological Research, 4, 6–16.

    Google Scholar 

  • Indow, T., Inoue, E., & Matsushima, K. (1962b). “An experimental study of the Luneburg theory of binocular space perception (2). The alley experiments,” Japanese Psychological Research, 4, 17–24.

    Google Scholar 

  • Indow, T., Inoue, E., & Matsushima, K. (1963). “An experimental study of the Luneburg theory of binocular space perception (3): The experiments in a spacious field,” Japanese Psychological Research, 5, 10–27.

    Google Scholar 

  • Lie, S. (1886). “Bemerkungen zu Helmholtz’ Arbeit über die Thatsachen, die der Geometrie zu Grunde liegen,” Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikalische Classe, 38, 337–342.

    Google Scholar 

  • Luneburg, R.K. (1947). Mathematical analysis of binocular vision. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Luneburg, R.K. (1948). “Metric methods in binocular visual perception.” In Studies and essays, (pp. 215–240). New York: Interscience.

    Google Scholar 

  • Luneburg, R.K. (1950). “The metric of binocular visual space,” Journal of the Optical Society of America, 40, 627–642.

    Article  Google Scholar 

  • Matsushima, K., & Noguchi, H. (1967). “Multidimensional representation of binocular visual space,” Japanese Psychological Research, 9, 83–94.

    Google Scholar 

  • Montague, R. (1974). “Deterministic theories.” Reprinted in R.H. Thomason (Ed.), Formal philosophy: Selected papers of Richard Montague, (pp. 332–336). New Haven: Yale Press.

    Google Scholar 

  • Moser, J. (1973). Stable and random motions in dynamical systems with special emphasis on celestial mechanics. Hermann Weyl Lectures, the Institute for Advanced Study. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Nishikawa, Y. (1967). “Euclidean interpretation of binocular visual space,” Japanese Psychological Research, 9, 191–198.

    Google Scholar 

  • Pirenne, M.H. (1975). “Vision and art.” In E.C. Carterette & M.P. Friedman (eds.), Handbook of perception, Vol. 5, 434–490.

    Google Scholar 

  • Riemann, B. (1854). “Über die Hypothesen, welche der Geometrie zu Grunde liegen,” Gesellschaft der Wissenschaften zu Göttingen: Abhandlungen, 1866–67, 13, 133–142.

    Google Scholar 

  • Sitkinov, K. (1960). “Existence of oscillating motions for the three-body problem,” Doklady Akademii Nauk, USSR, 133(2), 303–306.

    Google Scholar 

  • Suppes, P. (1977). “Is visual space Euclidean?” Synthese, 35, 397–421.

    Article  Google Scholar 

  • Suppes, P., & Zanotti, M. (1981). “When are probabilistic explanations possible?” Synthese, 48, 191–199.

    Article  Google Scholar 

  • Szczerba, L.W. (1984). “Imbedding of finite planes,” Potsdamer Forschungen, Reihe B Heft, 41, 99–102.

    Google Scholar 

  • Szczerba, L.W., & Tarski, A. (1979). “Metamathematical discussion of some affine geometries,” Fundamenta Mathematicae, 104, 115–192.

    Google Scholar 

  • Wagner, M. (1985). “The metric of visual space,” Perception & Psychophysics, 38, 483–495.

    Article  Google Scholar 

  • Weyl, H. (1923). Mathematische Analyse des Raumproblems. Berlin: Springer.

    Google Scholar 

  • Zajaczkowska, A. (1956a). “Experimental determination of Luneburg’s constants σ and K,” Quarterly Journal of Experimental Psychology, 8, 66–78.

    Article  Google Scholar 

  • Zajaczkowska, A. (1956b). “Experimental test of Luneburg’s theory. Horopter and alley experiments,” Journal of the Optical Society of America, 46, 514–527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Suppes, P. (1990). Philosophy and the Sciences. In: Sieg, W. (eds) Acting and Reflecting. Synthese Library, vol 211. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2476-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2476-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7617-3

  • Online ISBN: 978-94-009-2476-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics