Abstract
The mechanism and stereochemical course of addition of allylsilanes and allylstannanes to acetals has been investigated. Using an intramolecular process to model the possible transition states the reaction stereochemistry has been shown to depend on the nature of the Lewis acid and acetal structure, but not on the allylmetal. Trimethylsilyl tritiate, triflic acid and BF3·OEt2 gave highly selective reactions while SnCl4 and TiCl4 did not. A spectroscopic investigation into the complexes formed between dimethyl acetals and various Lewis acids showed divergent results ranging from no observable complexation of the acetal with TMSOTf to complete, stoichiometry-dependent complexation with SnCl4. Finally, the duality of mechanism and its stereochemical consequences in reactions of acetals has been demonstrated. Using enol ethers as oxocarbenium ion precursors, the results show conclusively that the model dimethyl acetal does not react with TMSOTf via an oxocarbenium ion. As in classic nucleophilic aliphatic substitution, stereochemistry is used as a probe for differentiating SN1 and SN2 mechanisms in acetal reactions as well.
Keywords
- Lewis Acid
- Dimethyl Acetal
- Mass Recovery
- Enol Ether
- Triflic Acid
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555.
Hoffmann, R. W. Ibid. 1987, 26, 489.
Yamamoto, Y. Accounts Chem. Res. 1987, 20, 243.
Yamamoto, Y. Aldrichim. Acta 1987, 30, 45.
Masamune, S. Angew. Chem., Int. Ed. Engl. 1980, 19, 557.
Denmark, S. E.; Weber, E. J. Helv. Chim. Acta 1983, 66, 1551.
Weber, E. J., Ph.D. Thesis, University of Illinois, Urbana, IL, 1985.
Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc. 1984, 106, 7970.
Denmark, S. E.; Henke, B. R.; Weber, E. J. J. Am. Chem. Soc. 1987, 109, 2512.
Yamamoto, Y.; Nishii, S.; Yamada, J. J. Am. Chem. Soc. 1986, 108, 7116.
Seebach, D.; Imwinkelreid, R.; Stucky, G. Helv. Chim. Acta 1987, 70, 448.
Murata, S.; Suzuki, M.; Noyori, R. Tetrahedron 1988, 44, 4259.
Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043.
Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976, 941.
Sakurai, H. Pure and Appl. Chem. 1982, 54, 1.
Sakurai, H.; Sasaki, K.; Hosomi, A. Tetrahedron Lett. 1981, 22, 745.
Noyori, R.; Murata, S.; Suzuki, M. Terahedron 1981, 37, 3899.
Mukaiyama, T.; Nagaoka, H.; Murakami, M.; Ohshima, M. Chem. Lett. 1985, 977.
Hosomi, A.; Ando, M.; Sakurai, H. Chem. Lett. 1986, 365.
For leading references see: (a) Andrew, R. G.; Cannow, R. E.; Johnson, W. S.; Elliott, J. D.; Ramazani, S. Tetrahedron Lett. 1987, 28, 6535.
Bartlett, P. D.; Elliott, J. D.; Johnson, W. S. J. Am. Chem. Soc. 1983, 105, 2088.
Mori, A.; Ishihara, K.; Arai, L; Yamamoto, H. Tetrahedron 1987, 43, 755.
Pillot, J.-P.; Deleris, G.; Dunogues, J.; Calas, R. J. Org. Chem. 1979, 44, 3397.
Ueno, Y.; Miyano, T.; Okawara, M. Tetrahedron Lett. 1982, 23, 443.
An intermediate hybrid of these limits is also possible.
Cremer, D.; Gauss, J.; Childs, R. F.; Blackburn, C. J. Am. Chem. Soc. 1985, 107, 2435.
Webb, J. G. K.; Yung, D. K. Can. J. Chem. 1983, 61, 488.
Chang, Y.; Cho, M. J.; Euser, B. A.; Kresge, A. J. J. Am. Chem. Soc. 1986, 108, 4192.
Burt, R. A.; Chiang, Y.; Chwang, W. K.; Kresge, A. J.; Okuyama, T.; Tang, Y. S.; Yin, Y. Ibid. 1987, 109, 3787.
Earnshaw, C.; Wallis, C. J.; Warren, S. J. Chem. Soc., Perkin Trans 1 1979, 3099.
Chauzov, V. A.; Studner, Y. N.; Rudnilskaya, L. S.; Fokin, A. V. Zh. Obshch. Khim. 1986, 56, 2553.
Nagata, W.; Yoshioka, M. Org. Synth. 1972, 52, 90.
Schmidt, J. P.; Piraux, M.; Phillete, J. F. J. Org. Chem. 1975, 40, 1586.
Torr, R. S.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1983, 1179.
Burgi, H. B.; Dunitz, J. D.; Lehn, J.-M.; Wipff, G. Tetrahedron 1974, 30, 1563.
Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1982, 104, 7162.
Houk, K. N. Pure Appl. Chem. 1983, 55, 277.
Kahn, S. D.; Pau, C. F.; Chamberlin, A. R.; Hehre, W. J. Ibid. 1987, 109, 650.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1989 Kluwer Academic Publishers
About this chapter
Cite this chapter
Denmark, S.E., Wilson, T.M. (1989). Studies on the Mechanism of Allylmetal-Acetal Additions. In: Schinzer, D. (eds) Selectivities in Lewis Acid Promoted Reactions. NATO ASI Series, vol 289. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2464-2_13
Download citation
DOI: https://doi.org/10.1007/978-94-009-2464-2_13
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-7611-1
Online ISBN: 978-94-009-2464-2
eBook Packages: Springer Book Archive