Skip to main content

Pre-Pleistocene Climates: Data and Models

  • Chapter
Book cover Climate and Geo-Sciences

Part of the book series: NATO ASI Series ((ASIC,volume 285))

Abstract

Six major problems in paleoclimatology are utilized to illustrate how critical observations from the pre-Pleistocene are leading focused, interdisciplinary investigations which are guiding future research: (1) the faint early sun paradox, (2) the Proterozoic “ice house”, (3) Cretaceous warmth, (4) Eocene equator-to-pole temperature gradients, (5) gateways and the Oligocene to Miocene transition to glacial climates, and (6) Milankovitch sedimentary rhythms during non-glacial climates. The research in these areas have produced a variety of advances and have fostered new areas of research including (1) consideration of atmospheric chemistry as a major regulator of the Earth’s climate, (2) illustration of critical limits to Radiative Convective Models and General Circulation Models, (3) consideration of feedbacks between temperature, continental weathering, and CO2, (4) evaluation of the mechanisms of glaciation, (5) illustration of the importance of tropical temperature history, (6) illustration of the importance of climates in continental interiors, (7) consideration of the importance of the role of the oceans in heat transport, (8) consideration of the role of barriers and gateways to ocean circulation and (9) indication of the potential of sedimentary rhythms as opportunities to investigate climate sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur, M. A., W. E. Dean, D. J. Bottjer and P. A. Scholle, 1984: Rhythmic bedding in Mesozoic-Cenozoic pelagic carbonate sequences: the primary and diagenetic origin of Milankovitch-like cycles. Milankovitch and Climate, J. Imbrie, J. Hays, G. Kukla and B. Saltzman, Eds., D. Reidel, Dordrecht, 191–222.

    Google Scholar 

  • Augustsson, T., and V. Ramanathan, 1977: A radiative-convective model study of the CO2 climate problem. J. Atmos. Sci., 34, 448–451.

    Article  Google Scholar 

  • Barron, E. J., 1987: Eocene equator-to-pole surface ocean temperatures: A significant climate problem? Paleoceanography, 2, 729–739.

    Article  Google Scholar 

  • Barron, E. J., 1983: A warm, equable Cretaceous: The nature of the problem. Earth Sci. Rev., 19, 309–338

    Article  Google Scholar 

  • Barron, E. J., M. A. Arthur and E. G. Kauffman, 1985: Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate. Earth and Planetary Science Letters, 72, 327–340.

    Article  Google Scholar 

  • Barron, E. J., S. L. Thompson and S. H. Schneider, 1981: An ice-free Cretaceous? Results from climate model simulations. Science, 212, 501–508.

    Article  Google Scholar 

  • Barron, E. J., and W. M. Washington, 1985: Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. E. T. Sundquist and W. S. Broecker, Eds., American Geophysical Union, Washington, DC, 546–553.

    Chapter  Google Scholar 

  • Barron, E. J., and W. M. Washington, 1984: The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies. J. Geophys. Res., 89, 1267–1279.

    Article  Google Scholar 

  • Beaty, C, 1978: The causes of glaciation. Am. J. Sci., 66, 452–459.

    Google Scholar 

  • Berggren, W., and C. Hollister, 1974: Paleogeography, paleobiogeography and the history of circulation in the Atlantic Oceans. Studies in Paleo-oceanography, W. W. Hay, Ed., Society of Economic Paleontologists and Mineralogists, Spec. Publ. 20, 126–186.

    Google Scholar 

  • Berner, R. A., A. C. Lasaga and R. M. Garrels, 1983: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci., 283, 641–683.

    Article  Google Scholar 

  • Crowell, J., and L. A. Frakes, 1970: Phanerozoic glaciation and the causes of the Ice Ages. Am. J. Sci., 268, 193–224.

    Article  Google Scholar 

  • Crowley, T. J., D. A. Short, J. G. Mengel and G. R. North, 1986: Role of seasonality in the evolution of climate during the last 100 million years. Science, 231, 579–584.

    Article  Google Scholar 

  • Dean, W. E., J. V. Gardner, L. F Jansa, P. Cepek and E. Seibold, 1977: Cyclic sedimentation along the continental margin of northwest Africa. Initial Reports of the Deep Sea Drilling Project, Y. Lancelot, E. Seibold et al., U.S. Government Printing Office, Washington, 41, 965–986.

    Google Scholar 

  • de Boer, P. L., 1982: Cyclicity and the storage of organic matter in Cretaceous pelagic sediments. Cyclic and Event Stratification, G. Einsele and A. Seilacher, Eds., Springer, New York, 456–475.

    Google Scholar 

  • Dickinson, R. E., 1985: Climate sensitivity. Advances Geophys., 28A, 99–129.

    Article  Google Scholar 

  • Estes, R., and J. H. Hutchison, 1980: Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago. Palaeogeo. Palaeoclim. Palaeoecol., 30, 325–347.

    Article  Google Scholar 

  • Fischer, A. G., 1980: Gilbert-bedding rhythms and geochronology, in: The Scientific Ideas of G. K. Gilbert, E. I. Yockelson, Ed., Geol. Soc. Am. Spec. Pap., 183, 93–104.

    Google Scholar 

  • Fischer, A. G., 1982: Long-term climatic oscillations recorded in stratigraphy. Climate in Earth History, W. H. Berger and J. C. Crowell, Eds., National Academy Press, Washington, DC, 97–104.

    Google Scholar 

  • Frakes, L. A., and E. Kemp, 1972: Influence of continental positions on Early Tertiary climates. Nature, 240, 97–100.

    Article  Google Scholar 

  • Gill, A. E., and K. Bryan, 1971: Effects of geometry on the circulation of a three-dimensional southern hemisphere ocean model. Deep-Sea Res., 18, 685–721.

    Google Scholar 

  • Gough, D. O., 1981: Solar interior structure and luminosity variations. Solar Physics, 74, 21–34.

    Article  Google Scholar 

  • Hambrey, M. J., and Harland, W. B., 1981: Earth’s Pre-Pleistocene glacial record. Cambridge Univ. Press, Cambridge, 1004 pp.

    Google Scholar 

  • Hays, J., J. Imbrie and N. J. Shackleton, 1976: Variations in the Earth’s orbit: Pacemaker of the Ice Ages. Science, 194, 1121–1132.

    Article  Google Scholar 

  • Henderson-Sellers, A., 1979: Clouds and the long term stability of the Earth’s atmosphere and climate. Nature, 279, 786–788.

    Article  Google Scholar 

  • Herbert, T. D., and A. G. Fischer, 1986: Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature, 321, 739–743.

    Article  Google Scholar 

  • Holland, H. D., 1978: The Chemistry of the Atmosphere and Oceans. Wiley Interscience, New York, 351 pp.

    Google Scholar 

  • Irving, E., and J. K. Park, 1972: Hairpins and superintervals. Can. Jour, of Earth Sci., 9, 1318–1324.

    Article  Google Scholar 

  • Janecek, T. R., and D. K. Rea, 1983: Eolian deposition in the northwest Pacific Ocean: Cenozoic history of atmospheric circulation. Geol. Soc. Am. Bull., 94, 730–738.

    Article  Google Scholar 

  • Karhu, J., and S. Epstein, 1986: The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochim. Cosmochim. Acta, 50, 1745–1756.

    Article  Google Scholar 

  • Kauffman, E. G., 1977: Upper Cretaceous cyclothems, biotas, and environments, Rock Canyon Anticline, Pueblo, Colorado. Cretaceous Facies, Faunas, and Paleoenvironments across the Western Interior Basin, E. G. Kauffman, Ed., Rocky Mtn. Assoc. Geol., 14, 129–152.

    Google Scholar 

  • Keigwin, L. D., and B. H. Corliss, 1986: Stable isotopes in late middle Eocene to Oligocene foraminifera. Geol. Soc. Am. Bull., 97, 335–345.

    Article  Google Scholar 

  • Kennett, J. P., 1977: Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceano-graphy. J. Geophys. Res., 82, 3843–3860.

    Article  Google Scholar 

  • Knauth, L. P., and S. Epstein, 1976: Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta, 40, 1095–1108.

    Google Scholar 

  • Kuhn, W. R., and S. K. Atreya, 1979: Amonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus, 37, 207–213.

    Article  Google Scholar 

  • Kuhn, W. R., and J. F. Kasting, 1983: The effects of increased CO2 concentration on surface temperature of the early Earth. Nature, 301, 53–55.

    Article  Google Scholar 

  • Kutzbach, J. E., and P. J. Guetter, 1984: The sensitivity of monsoon climates to orbital parameter changes for 9000 years B.P.: experiments with the NCAR general circulation model. Milankovitch and Climate, A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman, Eds., D. Reidel, Bordrecht, 801–820.

    Google Scholar 

  • Kutzbach, J. E., and B. L. Otto-Bliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low resolution general circulation model. J. Atmos. Sci., 39, 1177–1188.

    Article  Google Scholar 

  • Lasaga, A. C, R. A. Berner and R. M. Garrels, 1985: An improved geo-chemical model for atmospheric CO2 fluctuations over the past 100 million years, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, E. T. Sundquist and W. S. Broecker, Eds., American Geophysical Union, Washington, DC, 397–411.

    Chapter  Google Scholar 

  • Lowe, D. R., 1980: Archean sedimentation. Annual Reviews in Earth and Planetary Science, 8, 145–167.

    Article  Google Scholar 

  • MacGinitie, H.D., 1969: The Eocene Green River flora of northwestern Colorado and northeastern Utah. Calif. Univ. Pubs. Geol. Sci., 83, 1–143.

    Google Scholar 

  • MacGinitie, H. D., 1974: An early middle Eocene flora from the Yellow-stone-Absaroka volcanic province, northwestern Wind River Basin, Wyoming. Calif. Univ. Pubs. Geol. Sci., 108, 1–103.

    Google Scholar 

  • Owen, T., R. D. Cess and V. Ramanathan, 1979: An enhanced carbon dioxide greenhouse to compensate for reduced solar luminosity on Early Earth. Nature, 277, 640–642.

    Article  Google Scholar 

  • Piper, J. D. A., 1973: Latitudinal extent of Late Precambrian glaciations. Nature, 244, 342–344.

    Article  Google Scholar 

  • Pratt, L. M., 1981: A paleo-oceanographic interpretation of the sedimentary structures, clay minerals, and organic matter in a core of the Middle Cretaceous Greenhorn Formation near Pueblo, Colorado, Princeton University, Dissertation, 176 pp.

    Google Scholar 

  • Ramanathan, V., 1976: Radiative transfer within the Earth’s troposphere and stratosphere: A simplified radiative-convective model. J. Atmos. Sci., 33, 1330–1346.

    Article  Google Scholar 

  • Rea, D. K., M. Leinen and T. R. Janecek, 1985: Geologic approach to the long-term history of atmospheric circulation. Science, 277, 721–725.

    Article  Google Scholar 

  • Sagan, C, and G. Mullen, 1972: Earth and Mars: Evolution of atmospheres and surface temperatures. Science, 177, 52–56.

    Article  Google Scholar 

  • Schlesinger, M. E., and J. F. B. Mitchell, 1987: Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Rev. Geophysics, 25, 760–798.

    Article  Google Scholar 

  • Schneider, S. H., and S. L. Thompson, 1980: Cosmic conclusions from climatic models: Can they be justified? Icarus, 41, 456–469.

    Article  Google Scholar 

  • Schneider, S. H., S. L. Thompson and E. J. Barron, 1985: Mid-Cretaceous continental surface temperatures: Are high CO2 concentrations needed to simulate above freezing winter conditions?. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr. Ser. 32, E. T. Sundquist and W. S. Broecker, Eds., AGU, Washington, DC, 554–560.

    Chapter  Google Scholar 

  • Schwarzacher, W., and A. G. Fisher, 1982: Limestone-shale bedding and perturbations of the Earth’s orbit. Cyclic and Event Stratification, G. Einsele and A. Seilacher, Eds., Springer, New York, 72–95.

    Google Scholar 

  • Shackleton, N., and A. Boersma, 1981: The climate of the Eocene ocean. J. Geol. Soc. London, 138, 153–157.

    Article  Google Scholar 

  • Shackleton, N., and J. P. Kennett, 1975: Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, 281. Initial Reports of the Deep-Sea Drilling Project, J. P. Kennett, R. E. Houtz, et al., U. S. Government Printing Office, Washington, DC, 29, 801–807.

    Google Scholar 

  • Sheldon, R. P., 1986: Evidence for ring systems orbiting Earth in the geologic past. Earth and the Human Future, K. R. Smith, F. Fesharaki and J. P. Holdren, Eds., Westview Press, Boulder and London, 45–70.

    Google Scholar 

  • Tarling, D. H., 1978: The geological-geophysical framework of ice ages. Climatic Change, J. Gribben, Ed., Cambridge Univ. Press, 3–24.

    Google Scholar 

  • Tarling, D. H., 1974: A paleomagnetic study of Eocambrian tillites in Scotland. J. Geol. Soc. of London, 130, 163–177.

    Article  Google Scholar 

  • Walker, J. C. G., 1982: Climatic factors on the Archean Earth. Palaeogeogr. Palaeoclimat. Palaeoecol., 40, 1–11.

    Article  Google Scholar 

  • Walker, J. C. G., P. B. Hays and J. F. Kasting, 1981: A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res., 86, 9776–9782.

    Article  Google Scholar 

  • Wang, W.-C, W. B. Rossow, M.-S. Yao and M. Wolf sen, 1981: Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback. J. Atmos. Sci., 38, 1167–1178.

    Article  Google Scholar 

  • Washington, W. M., and G. A. Meehl, 1986: General circulation model CO2 sensitivity experiments: snow-sea ice albedo parameterizations and globally averaged surface air temperature. Climatic Change, 8, 231–241.

    Article  Google Scholar 

  • Williams, G. E., 1975: Late Precambrian glacial climate and the Earth’s obliquity. Geological Magazine, 112, 441–465.

    Article  Google Scholar 

  • Wolfe, J. A., 1978: A paleobotanical interpretation of Tertiary climates in the northern hemisphere. Amer. Sci., 66, 691–703.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Barron, E.J. (1989). Pre-Pleistocene Climates: Data and Models. In: Berger, A., Schneider, S., Duplessy, J.C. (eds) Climate and Geo-Sciences. NATO ASI Series, vol 285. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2446-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2446-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0412-8

  • Online ISBN: 978-94-009-2446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics