Skip to main content

On the use of grammars in vegetation analysis

  • Chapter
Numerical syntaxonomy

Part of the book series: Advances in vegetation science ((AIVS,volume 10))

  • 75 Accesses

Abstract

Grammars provide a means of generating large amounts of variability from relatively small resources, and seem especially relevant when the variation to be modelled is discontinuous since they describe the organisation symbols from some alphabet. In order to use grammars, it is desirable that they be inferred from observational data, and we present three examples of such inference. Two involve temporal successions, while the third is based on spatial transects of aquatic vegetation in wetlands in Victoria, Australia. The temporal successions were adequately represented by simpler regular grammars, suggesting that the processes involved may be modelled in a relatively simple manner. The spatial data requires a context-free grammar, reflecting the greater complexity of the spatial series, the uniqueness of each site, and the difficulties of modelling parallel systems with serial models. Examining the grammars further leads to some suggestions concerning the features of them which are important for ecological interpretation. It further leads to a novel view of the nature of groups in classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello, A., Burattini, E., Caianiello, E. R. & Masarotti, A. 1973. An algorithm for feature classification and structural memorization. Kybernetik 12: 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Angluin, D. 1980. Finding patterns common to a set of strings. J. Comput. Syst. Stud. 21: 46–62.

    Article  Google Scholar 

  • Barson, M. M. 1984. Numerical analysis of macrophyte vegetation in Victorian wetlands. Ph.D. Thesis, University of Melbourne.

    Google Scholar 

  • Bell, A. 1976. Computerized vegetative mobility in rhizomatous plants. In: Lindenmayer, A. & Rozenberg, G. (eds), Automata, development, languages, pp. 3–14. North Holland, Amsterdam.

    Google Scholar 

  • Chirathamjaree, C. & Ackroyd, M. H. 1980. A method for the inference of non-recursive context-free grammars. Internl. J. Man-Machine Stud. 12: 379–387.

    Article  Google Scholar 

  • Cook, C. M. & Rosenfeld, A. 1976. Some experiments in grammatical inference. In: Simon, J. C. (ed.), Computer oriented learning processes, pp. 157–174.

    Google Scholar 

  • Dale, M. B. 1979. On linguistic approaches to ecosystems and their classification. In: Orlóci, L., Rao, G. R. & Stiteler, W. M. (eds.), Statistical ecology7:11–20. Internatl. Coop. Publishing House, Maryland.

    Google Scholar 

  • Dale, M. B. 1981. A grammatical approach to vegetation classification. In: Gillison, A. N. & Anderson, D. J. (eds), Vegetation classification in Australia, pp. 141–149. CSIRO & ANU Press, Canberra.

    Google Scholar 

  • Dale, M. B. 1989. Similarity measures for structured data: a general framework and some applications to vegetation data. Vegetatio 81: 41–60.

    Article  Google Scholar 

  • Doucet, P. G. 1974. The syntactic inference problem for DOL sequences. In: Goos, G. & Hartmannis, J. (eds), L-systems. Lecture notes in computer science No. 15, pp. 146–161. Springer-Verlag, New York.

    Google Scholar 

  • Feliciangeli, H. & Herman, G. T. 1973. Algorithms for producing grammars from sample derivations: a common problem of formal language theory and developmental biology. J. Comput. Syst. Sci. 7: 97–118.

    Article  Google Scholar 

  • Fleck, A. C. 1974. An analysis of grammars by their derivation sets. Inform. Control 24: 389–398.

    Article  Google Scholar 

  • Frijters, D. 1978. Principles of simulation of inflorescence development. Ann. Bot. 42: 549–560.

    Google Scholar 

  • Frijters, D. & Lindenmayer, A. 1974. A model for the growth and flowering of Aster novae-angliae of the basis of table <1,0> L-systems. In: Goos, G. & Hartmanis, J. (eds), L-systems: Lecture notes in computer science 15, pp. 24–52. Springer-Verlag, Berlin.

    Google Scholar 

  • Goodall, D. W. 1953. Objective methods for the classification of vegetation I. The use of positive interspecific correlation. Austr. J. Bot. 1: 39–63.

    Google Scholar 

  • Haefner, J. W. 1975. Generative grammars that simulate ecosystems. Simulation Council Proc. 5: 189–211.

    Google Scholar 

  • Haefner, J. W. 1978. Ecosystem assembly grammars: generative capacity and empirical adequacy. J. Theor. Biol. 73: 293–318.

    Article  PubMed  CAS  Google Scholar 

  • Haefner, J. W. 1981. Avian community assemblage rules: the foliage gleaning guild. Oecologia 50: 131–142.

    Article  Google Scholar 

  • Hellendoorn, P. H. & Lindenmayer, A. 1974. Phyllotaxis in Bryophyllum tubiflorum: morphogenetic studies and computer simulation. Acta Bot. Neerl. 23: 473–493.

    Google Scholar 

  • Hernandez, C. & Arias, J. E. 1984. Syntactic pattern recognition of foetal stress. J. Biomed. Eng. 6: 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Hogeweg, P., Hesper, B., van Schaik, C. P. & Beeftink, W. G. 1985. Patterns in vegetation succession. An ecomorphological study. In: White, J. (ed.), The population structure of vegetation, pp. 673–666. W. Junk, Dordrecht.

    Google Scholar 

  • Jensén, S. & van der Maarel, E. 1980. Numerical approaches to wetland classification with special reference to macrophyte communities. Vegetatio 42: 117–128.

    Article  Google Scholar 

  • Jürgensen, H. & Lindenmayer, A. 1986. Modelling development by OL systems: modelling algorithms for developmental systems using cell lineages. Univ. Western Ontario, Dept. Computer Sci. Rep. 121. 53 pp.

    Google Scholar 

  • Klein, H. C. M., Penttonen, M., Rozenberg, G. & Salommaa, K. 1984. Direction independent context-sensitive grammars. Inform. & Control 63: 113–117.

    Article  Google Scholar 

  • Lance, G. N. & Williams, W. T. 1968. Note on a new information statistic classification program. Comput. J. 11: 195.

    Google Scholar 

  • Levenshtein, A. 1966. Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10: 707–710.

    Google Scholar 

  • Lindenmayer, A. 1974. Adding continuous components to L-systems. In: Goos, G. & Hartmanis, J. (eds), L-systems: Lecture Notes in Computer Science 15, pp. 52–68. Springer-Verlag, Berlin.

    Google Scholar 

  • Liou, J-I. & Dubes, R. 1977. A constructive method for grammatical inference based on clustering. Research Report, Dept. Computer Science, Michigan State University.

    Google Scholar 

  • Little, I. P. & Ross, D. R. 1985. The Levenshtein metric, a new means for soil classification tested by data from a sand-podzol chronosequence and evaluated by discriminant analysis. Aust. J. Soil Res. 23: 115–130.

    Article  Google Scholar 

  • Lu, H. R. & Fu, K-S. 1984. Inferability of context-free programmed grammars. Inter. J. Comput. Inform. Sci. 13: 33–58.

    Article  Google Scholar 

  • Mayoh, B. 1973. Mathematical models for cellular organisms. University of Aarhus, Computer Science Dept., Techn. Rep. 12, 38 pp.

    Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. Wiley, New York.

    Google Scholar 

  • Niklas, K. J. 1979. Simulation of apical developmental sequences in Bryophytes. Ann. Bot. 44: 339–352.

    Google Scholar 

  • Richetin, M. & Vernadata, F. 1984. Efficient regular grammatical inference for pattern recognition. Pattern Recognition 17: 245–250.

    Article  Google Scholar 

  • Ross, D., Dale, M. B., Shields, K. & Hulett, C. 1983. TAXON

    Google Scholar 

  • Users manual edition P4 Ref. Man. 6. CSIRO Division Computing Res., Canberra.

    Google Scholar 

  • Sandland R. L. & Young, P. C. 1979. Probabilistic tests and stopping rules associated with hierarchical classification. Austr. J. Ecol. 4: 399–406.

    Article  Google Scholar 

  • Smith, A. M. 1984. Plants, fractals and formal languages. Computer Graphics 18: 1–7.

    Article  Google Scholar 

  • Tai, J. W. & Fu, K-S. 1982. Inference of a class of CFPG by means of semantic rules. Internatl. J. Comput. Inform. Sci. 11: 1–23.

    Article  Google Scholar 

  • van der Maarel, E., Orlöci, L. & Pignatti, S. 1976. Data-processing in phytosociology, retrospect and anticipation. Vegetatio 32: 65–72.

    Article  Google Scholar 

  • van Noordwijk-Puyk, K., Beeftink, W. G. & Hogeweg, P. 1979. Vegetation development on salt-marsh flats after disappearance of the tidal factor. Vegetatio 39: 1–13.

    Article  Google Scholar 

  • Westhoff, V. & van der Maarel, E. 1973. The Braun-Blanquet approach. In: Whittaker, R. H. (ed.), Ordination and classification of communities, pp. 617–726. Junk, The Hague.

    Google Scholar 

  • Westman, R. S. 1977. Environmental languages and the functional bases of animal behaviour. In: Hazlitt, B. A. (ed.), Quantitative methods in the study of animal behaviour, pp. 145–201. Academic Press, London.

    Google Scholar 

  • Williams, W T. & Lambert, J. M. 1960. Multivariate methods in plant ecology II. The use of an electronic digital computer for Association analysis. J. Ecol. 48: 689–710.

    Article  Google Scholar 

  • Williams, W. T., Lance, G. N., Webb, L. J., Tracey, J. G. & Dale, M. B. 1969. Studies in the numerical analysis of complex rain forest communities III. The analysis of successional data. J. Ecol. 57: 515–535.

    Article  Google Scholar 

  • Yassouridis, A. & Hansert, E. 1986. Equidirection: a measure of similarity among time series. Biom. J. 6: 747–758.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

L. Mucina M. B. Dale

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dale, M.B., Barson, M.M. (1989). On the use of grammars in vegetation analysis. In: Mucina, L., Dale, M.B. (eds) Numerical syntaxonomy. Advances in vegetation science, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2432-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2432-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7597-8

  • Online ISBN: 978-94-009-2432-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics