Skip to main content

Core Excitons in Strained-Layer Superlattices

  • Chapter
Progress in Electron Properties of Solids

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 10))

  • 243 Accesses

Abstract

The physics of core excitons in semiconductors is reviewed, with emphasis on the fact that Hjalmarson-Frenkel ‘deep’ core excitons are observed, and co-exist with Wannier-Mott ‘shallow’ excitons which are not normally resolved experimentally. The theory of Hjalmarson-Frenkel excitons is extended to excitons in superlattices, and the Ga3d core exciton in GaAs 1-x P x /GaP strained-layer superlattices is predicted to change from a resonance in the conduction band (with apparent negative binding energy) to a bound state in the gap (positive binding energy), as the GaAs 1-x P x layer thickness decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bassani, Appl. Optics 19, 4093 (1980), and reference therein.

    Article  ADS  Google Scholar 

  2. W. Kohn, in Solid State Physics (edited by F. Seitz and D. Turnbull, Academic Press, New York, 1957), Vol. 5, pp. 258–321.

    Google Scholar 

  3. J.M. Luttinger and W. Kohn, Phys. Rev. 97, 969 (1955).

    Article  ADS  Google Scholar 

  4. R.S. Knox, Theory of Excitons, Academic, New York, 1963.

    MATH  Google Scholar 

  5. H.P. Hjalmarson, P. Vogl, D.J. Wolford and J.D. Dow, Phys. Rev. Lett. 44, 810 (1980).

    Article  ADS  Google Scholar 

  6. A. Quattropani, F. Bassani, G. Margaritondo and G. Tinivella, Nuovo Cimento 51B, 335 (1979), and reference therein.

    ADS  Google Scholar 

  7. F.C. Brown, in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull, Academic, New York, 1974, Vol. 29, p. 1 and references therein.

    Google Scholar 

  8. F.C. Brown and O.P. Rustgi, Phys. Rev. Lett. 28, 497 (1972).

    Article  ADS  Google Scholar 

  9. G. Margaritondo and J.E. Rowe, Phys. Lett. 59A, 464 (1977).

    ADS  Google Scholar 

  10. R.S. Bauer, R.Z. Bachrach, D.E. Aspnes and J.C. McMenamin, Nuovo Cimento B39, 409 (1977).

    ADS  Google Scholar 

  11. M. Altarelli, J. Phys. C 4, 95 (1978).

    Google Scholar 

  12. J.D. Dow, D.R. Franceschetti, P.C. Gibbons and S.E. Schnatterly, J. Phys. F 5, L211 (1975).

    Article  ADS  Google Scholar 

  13. M. Lax, J. Chem. Phys. 20, 1752 (1952).

    Google Scholar 

  14. H.P. Hjalmarson, H. Büttner and J.D. Dow, Phys. Rev. B 24, 6010 (1981).

    Article  ADS  Google Scholar 

  15. H.P. Hjalmarson, H. Büttner and J.D. Dow, Phys. Lett. 85A, 293 (1981).

    ADS  Google Scholar 

  16. K.E. Newman and J.D. Dow, Solid State Commun. 50, 587 (1984).

    Article  ADS  Google Scholar 

  17. M.A. Bowen, R.E. Allen and J.D. Dow, Phys. Rev. B30, 4617 (1984).

    ADS  Google Scholar 

  18. B.A. Bunker, S.L. Hulbert, J.P. Stott and F.C. Brown, Phys. Rev. Lett. 53, 2157 (1984). The cross-over of conduction band edges occurs between x = 0.1 and x = 0.3, depending on temperature. Figure 4 corresponds to a low temperature.

    Article  ADS  Google Scholar 

  19. M. Skibowski, G. Sprüssel and V. Saile, in Proceedings of the Fourteenth International Conference on the Physics of Semiconductors, Edinburgh, 1978, edited by B.L.H. Wilson, Institute of Physics, Bristol, 1979, p. 1359.

    Google Scholar 

  20. D.E. Aspnes, C.G. Olson and D.W. Lynch, in Proc. XIII-th Intern. Conf. Phys. Semiconductors (Rome, 1976), edited by F.G. Fumi (North-Holland, Amsterdam, 1976) pp. 1000.

    Google Scholar 

  21. D.E. Aspnes, C.G. Olson and D.W. Lynch, Phys. Rev. B12, 2527 (1975).

    ADS  Google Scholar 

  22. D.E. Aspnes, C.G. Olson and D.W. Lynch Phys. Rev B14, 2534, 4450 (1976).

    ADS  Google Scholar 

  23. D.E. Aspnes, M. Cardona, V. Saile and G. Sprüssel, Solid State Commun. 31, 99 (1979).

    Article  ADS  Google Scholar 

  24. R.E. Allen and J.D. Dow, Phys. Rev. B24, 911 (1981).

    ADS  Google Scholar 

  25. D.E. Eastman and J.L. Freeouf, Phys. Rev. Lett. 33, 1601 (1974).

    Article  ADS  Google Scholar 

  26. D.E. Eastman and J.L. Freeouf, Phys. Rev. Lett. 34, 1624 (1975).

    Article  ADS  Google Scholar 

  27. W. Gudat and D.E. Eastman, J. Vac. Sci Technol. 13, 831 (1976).

    Article  ADS  Google Scholar 

  28. D.E. Eastman, T.-C. Chiang, P. Heimann and F.J. Himpsel, Phys. Rev. Lett. 45, 6546 (1980).

    Google Scholar 

  29. S.Y. Ren, J.D. Dow and J. Shen, Phys. Rev. B38, 10677 (1988).

    ADS  Google Scholar 

  30. S.Y. Ren and J.D. Dow, J. Appl. Phys. 65, 1987 (1989).

    Article  ADS  Google Scholar 

  31. R.-D. Hong, D.W. Jenkins, S.Y. Ren and J.D. Dow, Mater. Res. Soc. Symp. Proc. 11, 545 (1987), in Interfaces, Superlattices, and Thin Films, ed. J.D. Dow and I.K. Schuller.

    Google Scholar 

  32. J.D. Dow, S.Y. Ren and J. Shen, NATO Advanced Science Institutes Series B183: Properties of Impurity States in Superlattice Semiconductors, ed. by C.Y. Fong, LP. Batra and S. Ciraci (Plenum Press, New York, 1988), p. 175.

    Google Scholar 

  33. J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  MATH  Google Scholar 

  34. W.A. Harrison, Electronic Structure and the Properties of Solids, W.H. Freeman, San Francisco, 1980, p. 481.

    Google Scholar 

  35. P. Vogl, H.P. Hjalmarson and J.D. Dow, J. Phys. Chem. Solids 44, 365 (1983).

    Article  ADS  Google Scholar 

  36. The electronic structure model employed [27] is an sp 3 s * empirical tight-binding model whose matrix elements exhibit chemical trends depending on atomic energies and bond lengths. The matrix elements were obtained by simultaneously fitting the band structures at the Γ and X points of sixteen semiconductors. In the case of GaAs 1−x P x , the L conduction minima are slightly lower than they should be, especially for x≈ 0.5, where they can lie slightly below the Γ and X minima. Thus the quantitative conclusions of the present work for the band gap and the exciton binding energy have theoretical uncertainties of order 0.2 eV, and the core exciton binding energies are, if anything, underestimated by about this amount. Hence the binding energies we predict are likely to be even larger in Nature.

    Google Scholar 

  37. C. Delerue, M. Lannoo and J.M. Langer, Phys. Rev. Lett. 61, 199 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dow, J.D., Shen, J., Ren, S.Y. (1989). Core Excitons in Strained-Layer Superlattices. In: Doni, E., Girlanda, R., Parravicini, G.P., Quattropani, A. (eds) Progress in Electron Properties of Solids. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2419-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2419-2_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7590-9

  • Online ISBN: 978-94-009-2419-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics