Advertisement

Nonlinear Rossby-Alfvén Global Waves on the Surface of a Rotating Sphere

  • Yu-Qing Lou
Part of the Astrophysics and Space Science Library book series (ASSL, volume 156)

Abstract

We consider two-dimensional nonlinear magnetohydrodynamic (MHD) waves of global scale for a thin magnetofluid layer on the surface of a rotating sphere. The fluid motions are assumed to be incompressible and the radial dimension is assumed to be in magnetohydrostatic balance. We are interested in a parameter regime in which horizontal spatial scales of wave motions, rotation rate of the background atmosphere, and the background zonal magnetic field strength are such that Rossby and Alfvén wave speeds are comparable. We obtain two kinds of finite-amplitude MHD waves propagating in the azimuthal directions relative to the uniformly rotating background atmosphere in the presence of a background zonal magnetic field and a steady differential zonal flow. These two kinds of nonlinear MHD waves are fundamentally due to the joint effects of uniform rotation of the background atmosphere and the background zonal magnetic field; the first is an inertial wave of the Rossby-Haurwitz type, modified by the presence of background zonal magnetic field, while the second is a magnetic Alfvén-like wave which is modified by the uniform rotation of background atmosphere. We discuss possible applications of these results in the context of geophysical and astrophysical systems.

Keywords

Rossby Wave Alfven Wave Uniform Rotation Free Function Background Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfvén, H. 1942, Ark. Mat. Astr. Fys., 29B, No. 2.Google Scholar
  2. Alfvén, H. 1942, Nature, 150, 405.ADSCrossRefGoogle Scholar
  3. Craig, R. A. 1945, J. Meteor., 2, 173.MathSciNetCrossRefGoogle Scholar
  4. Dupree, A. K., and Henze, W., Jr. 1972, Solar Phys., 27, 271.ADSCrossRefGoogle Scholar
  5. Ertel, H. 1943, Z. Meteor., 60, 332.Google Scholar
  6. Gilman, P. A. 1969, J. Atmos. Sci., 26, 1003.ADSCrossRefGoogle Scholar
  7. Haurwitz, B. 1940, J. Marine Res., 3, 254.Google Scholar
  8. Hide, R. 1966, Phil. Trans. Roy. Soc. London, A, 259, 615.ADSCrossRefGoogle Scholar
  9. Lou, Y. Q. 1987, Ap. J., 322, 862.ADSCrossRefGoogle Scholar
  10. Namikawa, T., and Hamabata, H. 1988, Phys. Fluids, 31 (4), 887.ADSzbMATHCrossRefGoogle Scholar
  11. Neamtan, S. M. 1946, J. Meteor., 3, 254.MathSciNetCrossRefGoogle Scholar
  12. Newton, H. W., and Nunn, M. L. 1951, M. N. R. A. S., 111, 413.ADSGoogle Scholar
  13. Parker, E. N. 1984, Geophys. Astrophys. Fluid Dyn., 29, 1.ADSzbMATHCrossRefGoogle Scholar
  14. Rossby, C.-G., and Collaborators 1939, J. Marine Res., 2, 38.Google Scholar
  15. Scherrer, P. H., Wilcox, J. M., and Svalgaard L. 1980, Ap. J., 241, 811.ADSCrossRefGoogle Scholar
  16. Snodgrass, H. B. 1983, Ap. J., 270, 288.ADSCrossRefGoogle Scholar
  17. Thompson, P. D. 1982, Mon. Weather. Rev., 110, 1321.ADSCrossRefGoogle Scholar
  18. Tsinganos, K. C. 1981, Ap. J., 245, 764.MathSciNetADSCrossRefGoogle Scholar
  19. Walén, C. 1944, Ark. Mat. Astr. Fys., 30A, 1.Google Scholar
  20. Walén, C. 1944, Ark. Mat. Astr. Fys., 31B, 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Yu-Qing Lou
    • 1
    • 2
  1. 1.Advanced Study ProgramNational Center for Atmospheric ResearchBoulderUSA
  2. 2.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations