Advertisement

Slim Accretion Discs

  • J. P. Lasota
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 156)

Abstract

In a recent paper, Abramowicz, Czerny, Lasota and Szuszkiewicz (1988) have found a new branch of equilibrium solutions for stationary accretion discs around black holes. These solutions correspond to moderately super-Eddington accretion rates. The existence of the new branch is a consequence of cooling due to general relativistic Roche lobe overflow and horizontal advection of heat. On an accretion rate versus surface density plane the new branch forms, together with the two “standard” branches (corresponding to to the Shakura-Sunyaev accretion discs models) a characteristically S-shaped curve. The relation between this “S-curve” and the variability of accretion discs is under study and seems to allow, at least in principle, for a limit cycle behaviour.

Keywords

Black Hole Neutron Star Accretion Disc Accretion Rate Roche Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowicz, M.A. (1981) Nature, 294, 235.ADSCrossRefGoogle Scholar
  2. Abramowicz, M.A., Lasota, J.P. & Xu, C. (1986) ‘Variability and Instabilities of Accretion Discs’ in G. Swarup & V.K. Kapahi Quasars, I.A.U. Symposium No. 119, p.371.Google Scholar
  3. Abramowicz, M.A., Czerny, B., Lasota, J.P. & Szuszkiewicz, E. (1988) Astrophys. J., 332, 646.ADSCrossRefGoogle Scholar
  4. Collin-Souffrin, S. (1987) Astr. Astrophys., 179, 60.ADSGoogle Scholar
  5. Frank, J., King, A.R. & Raine, D.J. (1985) Accretion Power in Astrophysics, Cambridge University Press, Cambridge.Google Scholar
  6. Horne, K. & Marsh, T.R. (1986) ‘Indirect Imaging of Accretion Disks in Binaries’, in K.O. Mason, M.G. Watson & N.E. White The Physics of Accretion onto Compact Objects, Springer Verlag, Berlin, p.l.Google Scholar
  7. Mason, K.O. (1986) ‘Accretion Discs in Low Mass X-ray Binaries’, in K.O. Mason, M.G. Watson & N.E. White The Physics of Accretion onto Compact Objects, Springer Verlag, Berlin, p.29.CrossRefGoogle Scholar
  8. Muchotrzeb, B. & Paczyński, B. (1982) Acta Astron., 32, 1.ADSGoogle Scholar
  9. Paczyński, B. & Bisnovatyi-Kogan, B. (1981) Acta Astron., 31, 283.ADSGoogle Scholar
  10. Paczyński, B. &: Wiita, P.J. (1980) Astr. Astrophys., 88, 23.ADSGoogle Scholar
  11. Shakura, N.I. & Sunyaev, R.A. (1973) Astr. Astrophys., 24, 337.ADSGoogle Scholar
  12. Verbunt, F. (1986) ‘Theory and Observations of Time-Dependent Disks’ in K.O. Mason, M.G. Watson & N.E. White The Physics of Accretion onto Compact Objects, Springer Verlag, Berlin, p.59.CrossRefGoogle Scholar
  13. Wade, R.A. & Ward, M.J. (1985) ‘Cataclysmic variables: Observational Overview’ in J.E. Pringle &, R.A. Wade Interacting Binary Stars, Cambridge University Press, Cambridge, p. 129.Google Scholar
  14. Wade, R.A., (1988), Astrophys. J.,,. in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. P. Lasota
    • 1
  1. 1.Departement d’Astrophysique Relativiste et Cosmologie, Section de MeudonObservatoire de ParisMeudon Principal CedexFrance

Personalised recommendations