Relativistic Radiative Transfer Using Moment Formalism

  • Roberto Turolla
  • Luciano Nobili
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 156)


An analysis of Thome’s (1981) structure equations governing radiation field moments is presented in the case of stationary, spherically symmetric flows. It is shown that the truncated system of moment equations must be solved subject to boundary conditions and a number of critical points equal to the truncation order l max arises. The moment formalism can be made tractable once a suitable closure assumption for moments of order higher than l max is introduced. A sample numerical integration of the moment equations is performed for a spherical, accreting flow with an assigned velocity and temperature profile.


Optical Depth Moment Equation Diffusion Regime Radiation Energy Density Correct Asymptotic Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.L. & Spiegel, E.A., 1972. Astrophys. J., 171, 127ADSCrossRefGoogle Scholar
  2. Chandrasekhar, S., 1960. Radiative transfer (New York: Dover)Google Scholar
  3. Schmid-Burgk, J., 1978. Astrophys. Space Sci., 32, 403Google Scholar
  4. Schweizer, M.A., 1982. Astrophys. J., 258, 798ADSCrossRefGoogle Scholar
  5. Schweizer, M.A., 1984a. Astrophys. J., 280, 809ADSCrossRefGoogle Scholar
  6. Schweizer, M.A., 1984b. Mont. Not. R. astr. Soc., 210, 303ADSGoogle Scholar
  7. Thorne, K.S., 1981. Mont. Not. R. astr. Soc., 194, 439MathSciNetADSzbMATHGoogle Scholar
  8. Thome, K.S., Flammang, R.A. & Żytkov, A., 1981. Mont. Not R. astr. Soc., 194, 475ADSGoogle Scholar
  9. Turolla, R., Nobili, L., 1988. Mont. Not. R. astr. Soc., in the pressGoogle Scholar
  10. Udey, N. & Israel, W., 1982. Mont. Not. R. astr. Soc., 199, 1137ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Roberto Turolla
    • 1
  • Luciano Nobili
    • 1
  1. 1.Department of PhysicsUniversity of PadovaPadovaItaly

Personalised recommendations