Skip to main content

Can we determine the biological availability of sediment-bound trace elements?

  • Conference paper
Sediment/Water Interactions

Part of the book series: Developments in Hydrobiology ((DIHY,volume 50))

Abstract

It is clear from available data that the susceptibility of biological communities to trace element contamination differs among aquatic environments. One important reason is that the bioavailability of metals in sediments appears to be altered by variations in sediment geochemistry. However, methods for explaining or predicting the effect of sediment geochemistry upon metal bioavailability are poorly developed. Experimental studies demonstrate that ingestion of sediments and uptake from solution may both be important pathways of metal bioaccumulation in deposit/detritus feeding species. Relative importance between the two is geochemistry dependent. Geochemical characteristics of sediments also affect metal concentrations in the tissues of organisms collected from nature, but the specific mechanisms by which these characteristics influence metal bioavailability have not been rigorously demonstrated. Several prerequisites are necessary to better understand the processes that control metal bioavailability from sediments. 1) improved computational or analytical methods for analyzing distribution of metals among components of the sediments; 2) improved computational methods for assessing the influences of metal form in sediments on sediment-water metal exchange; and 3) a better understanding of the processes controlling bioaccumulation of metals from solution and food by metazoan species directly exposed to the sediments. Such capabilities would allow mechanistic explanations essential to the development of practical tools sought for determining sediment quality criteria for metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. M. & F. M. M. Morel, 1978. Copper sensitivity of Gonyaulax tamarensis. Limnnol. Oceanogr., 23: 283–295.

    CAS  Google Scholar 

  • Balistrieri, L. S. & J. W. Murray, 1982. The adsorption of Cu, Pb, Zn and Cd on goethite from major ion seawater. Geochim. Cosmochim. ACTA 46: 1253–1265.

    CAS  Google Scholar 

  • Blanck, H., 1984. Species dependent variation among aquatic organisms in their sensitivity to chemicals. In Rasmussen, L. (ed.) Ecotoxicology: Ecological Bulletins No. 36. AiO Printing Ltd, Odense: 107–119.

    Google Scholar 

  • Borchardt, T., 1983. Influence of food quantity on the kinetics of cadmium uptake and loss via food and seawater in Mytilus edulis. Mar. Biol. 76: 67–76.

    CAS  Google Scholar 

  • Borgmann, U. & K. M. Ralph, 1983. Complexation and toxicity of copper and the free metal bioassay technique. Wat. Res., 17: 1697–1703.

    CAS  Google Scholar 

  • Breteler, R. J., I. Valiela & J. M. Teal, 1981. Bioavailability of mercury in several Northeastern U.S. Spartina ecosystems. Estuarine, Coastal, Shelf Sci. 12: 155–166.

    CAS  Google Scholar 

  • Bryan, G. W., 1976. Some aspects of heavy metal tolerance in aquatic organisms. In Lockwood, A. P. M. (ed.), Effects of Pollutants on Aquatic Organisms. Cambridge University Press: 7–34.

    Google Scholar 

  • Bryan, G. W., 1984. Pollution due to heavy metals and their compounds. In Kinne, O. (ed.), Marine Ecology v. 5, pt. 3, John Wiley and Sons, New York: 1289–1431.

    Google Scholar 

  • Bryan, G. W., 1985. Bioavilibility and effects of heavy metals in marine deposits. In Ketchum, B., J. Capuzzo, W. Burt, I. Duedall, P. Park & D. Kester (eds), Wastes in the Ocean, v. 6; Near Shore Waste Disposal. John Wileu and Sons, Inc. New York: 41–79.

    Google Scholar 

  • Bryan, G. W. & L. G. Hummerstone, 1977. Indicators of heavy-metal contamination in the Looe estuary (Cornwall) with particular regard to silver and lead. J. Mar. Biol. Assn. U.K. 57: 75–92.

    CAS  Google Scholar 

  • Bryan, G. W., W. J. Langston & L. G. Hummerstone, 1980. The use of biological indicators of heavy metal contamination in estuaries, with special reference to an assessment of the biological availability of metals in estuarine sediments from South-West Britain. Marine Biological Association of the United Kingdom Occasional Publication no. 1, 73 pp.

    Google Scholar 

  • Bryan, G. W., W. J. Langston, L. G. Hummerstone & G. R. Burt, 1985. A Guide to the Assessment of Heavy-Metal Contamination in Estuaries Using Biological Indicators. Marine Biological Association of the United Kingdom Occasional Publication No. 4, Plymouth; 91 pp.

    Google Scholar 

  • Cain, D. J. & S. N. Luoma, 1983. Copper and silver accumulation in transplanted and resident clams (Macoma balthica) in South San Francisco Bay. Mar. Environm. Res. 15: 115–135.

    Google Scholar 

  • Cain, D. J. & S. N. Luoma, 1986. Effect of seasonally changing tissue weight on trace metal concentrations in the bivalve Macoma balthica in San Francisco Bay. Mar. Ecol. Progress Series 28: 209–217.

    Google Scholar 

  • Cain, D. J., J. K. Thompson & S. N. Luoma, 1987. The effect of differential growth on spatial comparisons of copper content of a bivalve indicator. In Lindberg, S. E. & T. C. Hutchinson (eds) Heavy Metals in the Environment, CEP Consultants Ltd., Edinburgh: 455–458.

    Google Scholar 

  • Cairns, J., 1984. Factors moderating toxicity in surface waters; In Wilson J. (ed.), The Fate of Toxics in Surface and Ground waters. Acad. Nat. Sci. Philadelphia: 49–64.

    Google Scholar 

  • Campbell, P. G. C, A. G. Lesis, P. M. Chapman, W. K. Fletcher, B. E. Imber, S. N. Luoma, P. M. Stokes & M. Winfrey, 1988. Biologically available metals in sediments. Natl. Res. Council of Canada publ. 27694, Ottawa. 295 pp.

    Google Scholar 

  • Campbell, P. G. C, A. Tessier, M. Bisson & R. Bougie, 1985. Accumulation of copper and zinc in the Yellow Water Lily, Nuphar variegatum: Relationships to metal partitioning in the adjacent lake sediments. Can. J. Fish Aquat. Sci. 42: 23–32.

    CAS  Google Scholar 

  • Crecelius, E. A., J. T. Hardy, C. I. Gibson, R. L. Schmidt, C. W. Apts, J. M. Hurtisen & S. P. Hoyce, 1982. Copper bioavailability to marine bivalves and shrimp: Relationship to cupric ion activity. Mar. Envir. Res. 6: 13–26.

    CAS  Google Scholar 

  • Cross, F. A. & W. G. Sunda, 1985. The relationship between chemical speciation and bioavailability of trace metals to marine organisms — A review. In Chao, N. L. and W. Kirby-Smith (eds) Proc. Sympos. on Utilization of Coastal Ecosystems, V. 1, Rio Grande, RS-Brasil: 169–182.

    Google Scholar 

  • Cutshall, N. H., J. R. Naidu & W. G Pearcy, 1977. Zinc and cadmium in the Pacific Hake, Merluccius productus off the Western U.S. coast. Mar. Biol. 44: 195–201.

    CAS  Google Scholar 

  • Davies, A. G., 1976. An assessment of the basis of mercury tolerance in Dunaliella tertiolecta. J. Mar. Biol. Assn. U.K. 56: 39–57.

    CAS  Google Scholar 

  • Davies-Colley, R. J., P. O. Nelson & K. H. Williamson, 1984. Copper and cadmium uptake by estuarine sedimentary phases. Envir. Sci. Technol. 18: 491–499.

    CAS  Google Scholar 

  • Diks, D. M. & H. E. Allen, 1983. Correlation of copper distribution in a freshwater-sediment system to bioavailability. Bull. Envir. Contam. Toxicol. 30: 37–43.

    CAS  Google Scholar 

  • Dragun, J. & D E Baker, 1982. Characterization of copper availability and corn seedling growth by a DTPA soil test. Soil Sci. Am. J. 46: 921–925.

    CAS  Google Scholar 

  • Engel, D. W. & B. A. Fowler, 1979. Factors influencing cadmium accumulation and its toxicity to marine organisms. Envir. Health Perspectives 28: 81–88.

    CAS  Google Scholar 

  • Engel, D. W. & W. G. Sunda, 1979. Toxicity of cupric ion to eggs of the spot Leiostomus xanthurus and the Atlantic silverside Menidia menidia. Mar. Biol. 50: 121–126.

    CAS  Google Scholar 

  • Evans, R. D. & D. C. Lasenby, 1983. Relationship between body-lead concentration of Mysis relicta and sediment-lead concentrations in Kotenay Lake, B. C. Can. J. Fish. Aquat. Sci. 40: 78–81.

    CAS  Google Scholar 

  • Fisher, N., 1985. Accumulation of metals by marine pico-plankton. Mar. Biol. 87: 137–142.

    CAS  Google Scholar 

  • Fisher, N. S., M. Bohe & J.-L. Teyssie, 1984. Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phyto-plankters. Mar. Ecol. Progress Ser. 18: 201–213.

    CAS  Google Scholar 

  • Fisher, N. S. & D. Frodd, 1980. Heavy metals and marine diatoms: Influence of dissolved organic compounds on toxicity and selection for metal tolerance among four species. Mar. Biol. 59: 85–93.

    CAS  Google Scholar 

  • Fisher, N. S. & J.-L. Teyssie, 1986. Influence of food composition on the biokinetics and tissue distribution of zinc and americium in mussels. Mar. Ecol. Prog. Ser. 28: 197–207.

    CAS  Google Scholar 

  • Florence, T. M., B G. Lumsden & J. J. Fardy, 1983. Evaluation of some physico-chemical techniques for the determination of the fraction of dissolved copper toxic to the marine diatom Nitzshia closterium. Analytical Chimica ACTA 151:281–295.

    CAS  Google Scholar 

  • Foster, P. L. & F. M. M. Morel, 1982. Reversal of cadmium toxicity in a diatom: An interaction between cadmium activity and iron. Limnol. Oceanogr. 27: 745–752.

    CAS  Google Scholar 

  • Fuller, C. C. & J. A. Davis, 1987. Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand. Geochim. Cosmochim. ACTA 51: 1491–1502.

    CAS  Google Scholar 

  • Freedman, M. L., P. M. Cunningham, J. E. Schindler & M. J. Zimmerman, 1980. Effect of lead speciation on toxicity. Bull. Envir. Contam. Toxicol. 25: 389–393.

    CAS  Google Scholar 

  • Gaillard, J.-F., C. Jeandel, G. Michard, E. Nicolas & D. Renard, 1986. Interstitial waer chemistry of Villefranche bay sediments: Trace metal diagenesis. Mar. Chem. 18: 233–247.

    CAS  Google Scholar 

  • George, S. G., B. J. S. Pirie, A. R. Cheyene, T. L. Coombs & P. T. Grant, 1978. Detoxification of metals by marine bivalves: An ultrastructural study of the compartmentation of copper and zin in the oyster Ostrea edulis. Mar. Biol. 45: 147–156.

    CAS  Google Scholar 

  • Giblin, A.E., G.W. Luther III & A. Valiela, 1986. Trace metal solubility in salt marsh sediments contaminated with sewage sludge. Estuarine, coastal Shelf Sci. 23: 477–498.

    CAS  Google Scholar 

  • Gough, L. P., J. M. McNeal & R. C. Severson, 1980. Predicting native plant copper, iron, manganese and zinc levels using DTPA and EDTA soil extractants, Northern Great Plains. Soil Sci. Am. J., 44: 1030–1035.

    CAS  Google Scholar 

  • Guy, R. D., C. L. Chakrabarti & D. C. McBain, 1977. An evaluation of extraction techniques for the fractionation of copper and lead in model sediment systems. Wat. Res. 12: 21–24.

    Google Scholar 

  • Hall, T. M., 1982. Free ionic nickel accumulation and localization in the freshwater zooplankter, Daphnia magna. Limnol. Oceanogr. 27: 718–727.

    CAS  Google Scholar 

  • Harvey, R. W. & S. N. Luoma, 1985a. Separation of solute and particulate vectors of hravy metal uptake in controlled suspension-feeding experiments with Macoma balthica. Hydrobiologia 121:97–102.

    CAS  Google Scholar 

  • Harvey, R. W. & S. N. Luoma, 1985b. Effect of adherent bacteria and bacterial extracellular polyimers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag. Mar. Ecol. Progress Ser. 22: 281–289.

    CAS  Google Scholar 

  • Honeyman, B. D., 1984. Cation and anion adsorption at the oxide/solution interface in systems containing mixtures of adsorbents. An investigation of the concept of adsorptive additivity. PhD Thesis, Stanford University, Stanford, CA.

    Google Scholar 

  • Honeyman, B. D. & J. O. Leckie, 1986. Macroscopic partitioning coefficients for metal ion adsorption. P. 162–190. In. J. A. Davis and K. F. Hayes (eds) Geochemical Processes at Mineral Surfaces, Am. Chem. Symp. Ser. 23, Am. Chem. Soc, Washington, D.C.

    Google Scholar 

  • Huntsman, S. A. & W. G. Sunda, 1980. The role of trace metals in regulating phytoplankton growth. In Morris, I (ed.) The Physiological Ecology of Phytoplankton, Black-well Scientific Publications, London: 285–328.

    Google Scholar 

  • Jackson, G. A. & J. J. Morgan, 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268–282.

    CAS  Google Scholar 

  • Jenne, E. A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. In Gould, R. F. (ed.) Trace Inorganics in water. Am. Chem. So., Washington, D.C: 337–387.

    Google Scholar 

  • Jenne, E. A., 1977. Trace element sorption by sediments and soils — sites and processes. W. Chappel & K. Peterson (eds), Symposium on Molybdenum in the Environment. Dekker, New York: 425–553.

    Google Scholar 

  • Jenne, E. A., D. M. DiToro, H. E. Allen & C. S. Zarba, 1986. An activity-based model for developing sediment criteria for metals: Parti. A new approach. In J.N. Lester, R. Perry & R. M. Sterritt (eds) Proceedings of the International Conf. Chemicals in the Environment, Salper, London: 560–568.

    Google Scholar 

  • Johansson, C, D. J. Cain & S. N. Luoma, 1986. Variability in fractionation of Cu, Ag, and Z, among cytosolic proteins in the bivalve Macoma balthica. Mar. Ecol. Progress Ser., 28: 87–97.

    CAS  Google Scholar 

  • Kheboian, C. & C. F. Bauer, 1987. Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Anal. Chem. 59: 1417–1423.

    CAS  Google Scholar 

  • Korcak, R. F. & D. S. Fanning, 1978. Extractability of cadmium, copper, nickel and zinc by double acid versus DTPA and plant content at excessive soil levels. J. Envir. Quality 7: 506–512.

    CAS  Google Scholar 

  • Krantzberg, G., 1987. A study of the role of biotic and abiotic factors in modifying metal accumulation by Chironmus (Diptera: Chironomidae). Ph.D. thesis, University of Toronto, Ontario, Canada. 228 pp.

    Google Scholar 

  • Kuwabara, J. S., J. A. Davis & C. C. Y. Chang, 1986. Algal growth response to particle-bound orthophosphate and zinc. Limnol. Oceanogr. 31: 503–511.

    CAS  Google Scholar 

  • Langston, W. J., 1980. Arsenic in U.K. estuarine sediments and its availability to benthic organisms. J. Mar. Biol. Assn. U.K. 60: 869–881.

    Google Scholar 

  • Langston, W. J., 1982. The distribution of mercury in British estuarine sediments and its availability to deposit feeding bivalves. J. Mar. Biol. Assn. U.K. 62: 667–684.

    CAS  Google Scholar 

  • Langston, W. J., 1985. Assessment of the distribution and availability of arsenic and mercury in estuaries. P 131–146 in: Wilson, J. G. and W. Halcrow (eds.) Estuarine Management and Quality Assessment, Plenum Press. New York.

    Google Scholar 

  • LeBlanc, G. A., J. D. Mastone, A. P. Paradice, B. F. Wilson, H. B. Lockhart, Jr., & K. A. Robillard, 1984. The influence of speciation on the toxicity of silver to fathead minnow (Pimephales promelas). Envir. Toxicol. Chem. 3: 37–46.

    CAS  Google Scholar 

  • Lindsay, W. L. and W. A. Norvell, 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Am. J. 42: 421–428.

    CAS  Google Scholar 

  • Loring, D. H., 1981. Potential bioavailability of metals in eastern Canadian estuarine and coastal sediments. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 181: 93–101.

    CAS  Google Scholar 

  • Loring, D. H. & F. Prosi, 1986. Cadmium and lead cycling between water, sediment, and biota in an artificially contaminated mud flat on Borkum (F R G). Water Sci. Technol. 18: 131–139.

    CAS  Google Scholar 

  • Luoma, S. N., 1977. Dynamics of biologically available mercury in a small estuary. Estuarine Coastal Mar. Sci. 5: 643–652.

    CAS  Google Scholar 

  • Luoma, S. N., 1983. Bioavailability of trace metals to aquatic organisms — A review. Sci. Total Envir. 28: 1–22.

    CAS  Google Scholar 

  • Luoma, S. N., 1986. A comparison of two methods for determining copper partitioning in oxidized sediments. Mar. Chem. 20: 45–59.

    CAS  Google Scholar 

  • Luoma, S. N. & G. W. Bryan, 1978. Factors controlling availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. J. Mar. Biol. Assn. U.K. 58: 793–802.

    CAS  Google Scholar 

  • Luoma, S. N. and G. W. Bryan, 1982. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor. Estuarine, Coastal and Shelf Sci. 15: 95–108.

    CAS  Google Scholar 

  • Luoma, S. N., D. J. Cain & C. Johansson, 1985. Temporal fluctuations of silver, copper and zinc in the bivalve Macoma balthica at five stations in south San Francisco Bay. Hydrobiologia 129: 109–120.

    CAS  Google Scholar 

  • Luoma, S. N. & J. A. Davis, 1983. Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar. Chem. 12: 159–181.

    CAS  Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1976a. Estimating bioavailability of sediment-bound trace metals with chemical extractants. In D. D. Hemphill (ed.) Trace Substances in Environm. Health — X., University of Missouri, Columbia: 343–351.

    Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1976b. Factors effecting ithe availability of sediment-bound cadmium to the estuarine deposit feeding clam, Macoma balthica. In E. Cushing (ed.) Radioecology and Energy Resources, Dowden, Hutchinson and Ross, Inc., Stroudsnerg: 283–291.

    Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1977. The availability of sediment-bound cobalt, silver, and zinc to a deposit-feeding clam. In Wildung R. E. & H. Drucker (eds) Biological Implications of Metals in the Environment. NTIS CONF-750920, Springfield, VA: 213–230.

    Google Scholar 

  • Luoma, S. N. & D. J. H. Philips, 1988. Spatial distribution, temporal variation and impacts of trace elements in San Francisco Bay. Mar. Poll. Bull. 19: 413–425.

    CAS  Google Scholar 

  • Marquenie, J. M., 1985. Bioavailability of micropollutants. Sci. Technol. Letters 6: 351–358.

    CAS  Google Scholar 

  • Mason, A. Z., K. D. Jenkins & P. A. Sullivan, 1988. Mechanisms of trace metal accumulation in the polychaete Neanthes arenaceodentata. J. Mar. Biol. Assn. U.K. v. 68 (in press).

    Google Scholar 

  • McKnight, D., 1981. Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: A field study of the CuSO4 treatment of Mill Pond Reservoir, Burlington, Massachusetts. Limnol. Oceanogr. 26: 518–531.

    CAS  Google Scholar 

  • McKnight, D. M. & F. M. M. Morel, 1980. Copper com-plexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr. 25: 62–71.

    CAS  Google Scholar 

  • Morel, F. M. M. and R. J. M. Hudson, 1985. The geobiologi-cal cycle of trace elements in aquatic systems. Redfield revisited. In Stumm W. (ed.) Chemical Processes in Lakes, John Wiley and Sons, New York: 251–281.

    Google Scholar 

  • Morel, F. M. M., R. E. McDuff & J. J. Morgan, 1973. Interactions and chemostasis in aquatic chemical systems: Role of pH, pe, solubility and complexation. In Singer, P. C. (ed.) Trace metals and Metal Organic Interactions in Natural Waters, Ann Arbor Science Publications. Ann. Arbor: 157–200.

    Google Scholar 

  • Neff, J. W., R. S. Foster & J. F. Slowey, 1978. Availability of sediment-adsorbed heavy metals to benthos with particular emphasis on deposit-feeding infauna. Army Corps of Engineers Technical Report D-78–42, 78 pp.

    Google Scholar 

  • Newman, M. C. & A.W. Mcintosh, 1983. Slow accumulation of lead from contaminated food sources by the freshwater gastropods, Physa integra and Campeloma decisum. Arch. Envir. Contam. Toxicol. 12: 685–692.

    CAS  Google Scholar 

  • Norvell, W. A. & W. L. Lindsay, 1972. Reaction of DTPA chelates of iron, zinc, copper, and manganese with soils. Soil Sci. Soc. Am. Proc. 36: 778–783.

    Google Scholar 

  • Oakden, J. M., J. S. Oliver & A. R. Flegal, 1984. EDTA chelation and zinc antagonism with cadmium in sediment: effects on the behaviour and mortality of two infaunal amphipods. Mar. Biol. 84: 125–130.

    CAS  Google Scholar 

  • Oakley, S. M., P. O. Nelson & K. J. Williamson, 1981. Model of trace-metal partitioning in marine sediments. Envir. Sci. Technol. 15: 474–480.

    CAS  Google Scholar 

  • Owen, G., 1966. Digestion. In Wilbur, K M. & C M Yonge (eds), Physiology of Mollusca, Vol II. Academic Press, New York: 53–96.

    Google Scholar 

  • Pagenkopf, G K., 1983. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Envir. Sci. Technol. 17: 342–347.

    CAS  Google Scholar 

  • Packer, D. M., M. P. Ireland, & R. J. Wootton, 1980. Cadmium, copper, lead, zinc and manganese in the polychaete Arenicola marina from sediments around the coast of Wales. Envir. Poll. (Series A) 22: 309–321.

    CAS  Google Scholar 

  • Pecon, J. & E.N. Powell, 1981. Effect of the amino acid histidine on the uptake of cadmium from the digestive system of the Blue Crab, Callinectes sapidus. Bull. Envir. Contam. Toxicol. 27: 34–41.

    CAS  Google Scholar 

  • Pickering, W. F., 1981. Selective chemical extraction of soil components and bound metal species. CRC Critical Reviews Anal. Chem. 12: 233–266.

    CAS  Google Scholar 

  • Pesch, C. E. & D. Morgan, 1978. Influence of sediment in copper toxicity tests with the polychaete Neathes arenaceodentata. Wat. Res. 12: 747–751.

    CAS  Google Scholar 

  • Ray, S., D. W. McLeese & M. R. Peterson, 1981. Accumulation of copper, zinc, cadmium and lead from two contaminated sediments by three marine invertebrates - a laboratory study. Bull. Envir. Contam. Toxicol. 26: 315–322.

    CAS  Google Scholar 

  • Rendel, P. S., G. E. Batley & A.J. Cameron, 1980. Adsorption as a control of metal concentrations in sediments extracts. Envir. Sci. Technol. 14: 314–318.

    Google Scholar 

  • Reuter, J. G., Jr. & F. M. M. Morel, 1981. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanism in Thalassiosira pseudonana. Limnol. Oceanogr. 26: 67–73.

    Google Scholar 

  • Ritz, D. A., R. Swain & N.G. Elliot, 1982. Use of the mussel Mytilus edulis in monitoring heavy metal levels in seawater. Aus. J. Mar. Freshwat. Res. 33: 491–506.

    CAS  Google Scholar 

  • Roesijadi, G., 1981. The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar. Envir. Res. 4: 167–179.

    CAS  Google Scholar 

  • Sloof, W., J. A. M. van Oers & D. DeZwart, 1986. Margins of uncertainty in ecotoxicological hazard assessment. Envir. Toxicol. Chem; 5: 841–852.

    Google Scholar 

  • Strong, C. R. & S. N. Luoma, 1981. Variations in correlation of body size with concentrations of Cu and Ag in the bivalve Macoma balthica. Can. J. Fish. Aquat. Sci. 38: 1059–1064.

    CAS  Google Scholar 

  • Stumm, W. & P. A. Brauner, 1975. Chemical speciation. In Riley, J. P. & G. Skirrow (eds), Chemical Oceanography, Vol I 2nd Ed, Academic Press, London: 173–240.

    Google Scholar 

  • Stumm, W. & J.J. Morgan, 1981. Aquatic Chemistry. 2nd Ed. John Wiley & Sons, New York, 780 pp.

    Google Scholar 

  • Sunda, W. G., 1987. Neritic-oceanic trend in trace-metal toxicity to phytoplankton communities. In Capuzzo, J. M. & Dana R. Kester (eds), Oceanic Processes in marine Pollution — Vol I, Biological Processes and Wastes in the Ocean, Robert E. Krieger Publ. Co, Malabar, FL: 19–31.

    Google Scholar 

  • Sunda, W. G., D. W. Engel & R. M. Thuotte, 1978. Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: Importance of free admium ion. Envir. Sci. Technol. 12: 409–413.

    CAS  Google Scholar 

  • Sunda, W. G. & R. R. Guillard, 1976. The relationship between cupic ion activity and the toxicity of copper to phytoplankton. J. Mar. Res 34: 511–529.

    CAS  Google Scholar 

  • Sunda, W. G. & S. A. Huntsman, 1983. Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. Limnol. Oceanogr. 28: 924–934.

    CAS  Google Scholar 

  • Sunda, W. G. & J. A. M. Lewis, 1978. Effect of complexation by natural organic ligands on the toxicity of copper to a unicellular alga, Monochrysis lutheri. Limnol. Oceanogr. 23: 870–876.

    CAS  Google Scholar 

  • Swallow, K. C, J. C. Westall, D. M. McKnight, N. M. L. Morel & F. M. M. Morel, 1978. Potentiometrie determination of copper complexation by phytoplankton exudates. Limnol. Oceanogr. 23: 538–542.

    CAS  Google Scholar 

  • Swartz, R. C, G. R. Ditsworth, D. W. Schults & J. O. Lamberson, 1985. Sediment toxicity to a marine infaunal amphipod: Cadmium and its interaction with sewage sludge. Mar. Envir. Res. 18: 133–153.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851.

    CAS  Google Scholar 

  • Tessier, A., P. G. C. Campbell, J. C. Auclair & M Bisson, 1984. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can. J. Fish. Aquat. Sci. 41: 1463–1471.

    CAS  Google Scholar 

  • Tessier, A., F. Rapin & R. Carignan, 1985. Trace metals in oxic lake sediments: possible adsorption onto iron oxyhy-droxides. Geochim. Cosmoschim. ACTA 49: 183–194.

    CAS  Google Scholar 

  • Vangenechten, J. H. D., S. R. Aston & S. W. Fowler, 1983. Uptake of americium-241 from two experimentally labelled deep-sea sediments by three benthic species: a bivalve mollusc, a polychaete and an isopod. Mar. Ecol. Progress. Ser. 13: 219–228.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this paper

Cite this paper

Luoma, S.N. (1989). Can we determine the biological availability of sediment-bound trace elements?. In: Sly, P.G., Hart, B.T. (eds) Sediment/Water Interactions. Developments in Hydrobiology, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2376-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2376-8_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9007-0

  • Online ISBN: 978-94-009-2376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics