Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 168))

Abstract

Food extrusion is a versatile process with an expanding variety of applications. Its complicated process environment contributes to scale-up and design difficulties that can be addressed by effective use of computer simulation. This paper reviews the basic physical equations which describe the food extrusion process. These equations define the relevant physical properties necessary for simulations. Next, existing data on viscosity, thermal conductivity, heat capacity, density and friction factors applicable to extrusion processes are summarized along with some of the measurement techniques used and their limitations. A review of computer simulations of food extrusion illustrates its current status and potential as a design tool. Finally, suggestions for future work and collaboration are offered to speed implementation efforts. They are extending the physical property data bank, developing a repository of extrusion data on different sizes of equipment, collaborative development and testing of simulation models, and the formation of a researcher/practitioner user group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagley, E. B. (1957) ‘End correction in capillary flow of polyethylene’, J. Appl. Phys. 28, 624–627.

    Article  CAS  Google Scholar 

  • Baird, D. G. (1981) ‘Dynamic viscoelastic properties of soy isolate doughs’ J. Texture Stud. 12, 1–16.

    Article  Google Scholar 

  • Baird, D. G. (1982) ‘The effect of heat and shear on the viscoelastic properties of soy flour dough’, J. Food Proc. Eng. 5, 231–245.

    Article  Google Scholar 

  • Bloksma, A. H. (1972) ‘Rheology of wheat flour doughs’, J. Texture Stud. 3, 3–171

    Article  Google Scholar 

  • Blyer, L. L., Jr. and Doane, J. H. (1967) ‘An Analysis of Brabender torque rheometer data’, Polym. Eng. Sci. 7, 178–181.

    Article  Google Scholar 

  • Bouvier, J. M., Fayard, G. and Clayton, J. T. (1987) ‘Flow rate and heat transfer modelling in extrusion cooking of soy protein’, J. Food Eng. 6, 123–141.

    Article  Google Scholar 

  • Brenner, P. E., Richmond, R. and Smith, A. C. (1986) ‘Aqueous dispersion rheology of extusion cooked maize’, J. Texture Stud. 17, 51–60.

    Article  Google Scholar 

  • Bruin, S., Zuilichem, D. J. van and Stolp, W. (1978) ‘Fundamental and engineering aspects of extrusion of biopolymers in a singlescrew extruder’, J. Food Proc. Eng. 2, 1–37.

    Article  CAS  Google Scholar 

  • Cervone, N. W. and Harper, J. M. (1978) ‘Viscosity of an intermediate moisture dough’, J. Food Proc. Eng. 2, 83–95.

    Article  Google Scholar 

  • Cheftel, J. C. (1984) ‘Extrusion cooking: guidelines for publications’, in P. Zeuthen, J. C. Cheftel, C. Eriksson, M. Jul, H. Leniger, P. Linko, G. Varela and G. Vos (eds.), Thermal Processing and Quality of Foods, Elsevier Applied Science Publishers, New York, pp. 272–274.

    Google Scholar 

  • Clark, J. P. (1978) ‘Dough rheology in extrusion cooking’, Food Technol. 32, 73–82.

    Google Scholar 

  • Darnell, W. H. and Mol, E. A. J. (1956) ‘Solids conveying in screw extruders’, Soc. Plast. Engs. J. 12, 20–27.

    Google Scholar 

  • Davidson, V. J., Paton, D., Diosady, L. L. and Rubin, L. J. (1984) ‘A model for mechanical degradation of wheat starch in a single screw extruder’, J. Food Sci. 49, 1154–1157.

    Article  Google Scholar 

  • Dickerson, R. W. (1965) ‘An apparatus for measurement of thermal diffusivity of foods’, Food Technol. 19, 198–204.

    Google Scholar 

  • Diosady, L. L., Paton, D., Rosen, N., Rubin, L. J. and Athanassoulias, C. (1985) ‘Degradation of wheat starch in a single screw extruder: mechano-kinetic breakdown of cooked starch’, J. Food Sci. 50, 1697–1706.

    Article  CAS  Google Scholar 

  • Fletcher, S. I., McMaster, T. J., Richmond, P., and Smith, A. C. (1985) ‘Rheology and extrusion of maize grits’, Chem. Eng. Commun. 32, 239–262.

    Article  Google Scholar 

  • Fricke, A. L., Clarke, J. P., and Mason, T. F. (1977) ‘Cooking and drying of fortified cereal foods: extruder design’, AIChE Symp. Ser. 73 (163), 134–141.

    Google Scholar 

  • Gomez, M. H. and Aguilera, J. M. (1984) ‘A physicochemical model for extrusion of corn starch’, J. Food Sci. 49, 40–44.

    Article  Google Scholar 

  • Goodrich, J. E. and Porter, R. S. (1967) ‘A rheological interpretation of torque-rheometer data. Polym. Eng. Sci. 7 (1), 45–51.

    Article  CAS  Google Scholar 

  • Harmann, D. V. and Harper, J. M. (1973) ‘Effect of extruder geometry on torque and flow’, ASAE Trans. 16, 1175–1178.

    Google Scholar 

  • Harmann, D. V. and Harper, J. M. (1974) ‘Modeling a forming foods extruder’, J. Food Sci. 39, 1099–1104.

    Article  Google Scholar 

  • Harper, J. M. (1979) ‘Food extrusion’, CRC Crit. Rev. Food Sci. Nutr. 2, 155–215.

    Article  Google Scholar 

  • Harper, J. M., Rhodes, T. P. and Wanninger, L. A. (1971) ‘Viscosity model for cooked cereal dough’, AIChE Symp. Ser. 67, 40–43.

    Google Scholar 

  • Harper, J. M. (1981) Extrusion of Foods, Vol. 1, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Harper, J. M. (1986) ‘Extrusion texturization of foods’, Food Technol. 40, 70–76.

    Google Scholar 

  • Heldman, D. R. and Singh, R. P. (1981) Food Process Engineering, 2nd Ed., AVI Publishing, Westport, Connecticut.

    Google Scholar 

  • Janssen, L. P. B. M. (1986) ‘Models for cooking extrusion’, in M. LeMaguer and P. Jelen (eds), Food Engineering and Process Applications, Vol. 2., Unit operations, Elsevier Applied Science Publishers, London, pp. 115–129.

    Google Scholar 

  • Jao, Y. C. Chen, A. H., Lewandowski, D. and Irwin, W. E. (1978) ‘Engineering analysis of soy dough rheology in extrusion’, J. Food Proc. Eng. 2, 97–112.

    Article  Google Scholar 

  • Jasberg, B. K., Mustakas, G. C. and Bagley, E. B. (1979) ‘Extrusion of defatted soy flakes: model of a plug flow process’, J. Rheol. 23, 437–449.

    Article  Google Scholar 

  • Jasberg, B. K., Mustakas, G. C. and Bagley, E. B. (1981) ‘Effect of extruder retention time on capillary flow of soy dough’, J. Food Proc. Eng. 5, 43–56.

    Article  Google Scholar 

  • Lancaster, E. B. (1971) ‘Specific volume and flow of corn grits under pressure’, Chem. Eng. Prog. Sym. Series. 67, 30–34.

    Google Scholar 

  • Launay, B. and Bure, B. (1973) ‘Application of a viscometric method to the study of wheat flour doughs’, J. Texture Stud. 4, 82–101.

    Article  Google Scholar 

  • Levine, L. (1982) ‘Estimating output and power of food extruders’, J. Food Proc. Eng. 6, 1–13.

    Article  Google Scholar 

  • Levine, L. and Rockwood, J. (1986) ‘A correlation of heat transfer coefficients in food extruders’, Biotechnol. Prog. 2, 105–108.

    Article  CAS  Google Scholar 

  • Levine, L., Symes, S. and Weimer, J. (1986) ‘Automatic control of moisture in food extruders’, J. Food Proc. Eng. 8, 97–115.

    Article  Google Scholar 

  • Levine, L., Symes, S. and Weimer, J. (1987a) ‘A simulation of the effect of formula and feed rate variations on the transient behavior of starved extrusion screws’, Biotechnol. Prog. 3, 221–230.

    Article  Google Scholar 

  • Levine, L., Symes, S. and Weimer, J. (1987b) ‘A simulation of the effect of formula variations on the transient output of single screw extruders’, Biotechnol. Prog. 3, 212–220.

    Article  Google Scholar 

  • Linko, P., Colonna, P. and Mercier, C. (1981) ‘High-temperature, short-time extrusion cooking’, Adv. Cereal Sci. Technol. 4, 145–235.

    Google Scholar 

  • Lund, D. B. (1983) ‘Application of differential scanning calorimetry in foods’, in M. Peleg and E. B. Bagley (eds.), Physical Properties of Foods, AVI Publishing Co., Westport, Connecticut, pp. 125–143.

    Google Scholar 

  • Luxenburg, L. A., Baird, D. G. and Joseph, E. G. (1985) ‘Background studies in the modeling of extrusion cooking processes for soy flour doughs’, Biotechnol. Prog. 1, 33–38.

    Article  CAS  Google Scholar 

  • Mackey, K. L., Morgan, R. G. and Steffe, J. F. (1986) ‘A generalized viscosity model for extrusion of starch doughs’, ASAE Paper No. 86-6529, St. Joseph, Michigan.

    Google Scholar 

  • Middleman, S. (1977) Fundamentals of Polymer Processing, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Mohamed, I. O., Morgan, R. G. and Ofoli, R. Y. (1988) ‘Average convective heat transfer coefficients in single screw extrusion of non-Newtonian food materials’, Biotechnol. Prog. 4, 68–75.

    Article  Google Scholar 

  • Morgan, R. G., Suter, D. A. and Sweat, V. E. (1979) ‘Modeling the effects of temperature-time history, temperature, shear rate and moisture on apparent viscosity of defatted soy flour dough’, ASAE Paper No. 79-6002, St. Joseph, Michigan.

    Google Scholar 

  • Mustakas, G. C., Albrecht, W. J., Bookwalter, G. N., McGhee, J. E., Kwolek, W. F. and Griffen, E. L., Jr. (1970) ‘Extruder-processing to improve nutritional quality, flavor and keeping quality of full-fat soy flour’, Food Technol. 24, 1290–1296.

    CAS  Google Scholar 

  • Nazarov, N. I., Azarov, B. M. and Chaplin, M. A. (1971) ‘Capillary viscometry of macaroni dough’, IZV, Vyssh. Uchebn. Zaved. Pishch. Teknol. 2, 149–151.

    Google Scholar 

  • Paton, D. and Spratt, W. A. (1981) ‘Simulated approach to the estimation of degree of cooking of an extruder cereal product’, Cereal Chem. 58, 216–220.

    Google Scholar 

  • Pisipati, R. and Fricke, A. L. (1980) ‘Computer simulation of a single-screw cooking extruder’, in P. Linko, Y. Malkki, J. Olkku and J. Larinkari (eds.), Food Process Engineering, Vol. I., Food Processing Systems, Applied Science Publishers, London, pp. 757–767.

    Google Scholar 

  • Remsen, C. H. and Clark, J. P. (1978). ‘A viscosity model for cooking dough’, J. Food Proc. Eng. 2, 39–61.

    Article  Google Scholar 

  • Sek, J. P., Janssen, L. P. B. M. and Zuilichem, D. J. van. (1984) ‘The measurements of the rheological properties of starch-rich materials’, in P. Zeuthen, J. C. Cheftel, C. Eriksson, M. Jul, H. Leniger, P. Linko, G. Varela and G. Vos (eds.), Thermal Processing and Quality of Foods, Elsevier Applied Science Publishers, New York, pp. 272–274.

    Google Scholar 

  • Senouci, A. and Smith, A. C. (1987) ‘Analysis of a co-rotating twin screw extruder’, in P. Colonna (ed.), Cuisson-extrusion, Institut National de la Recherche Agronomique, Paris, pp. 119–128.

    Google Scholar 

  • Steffe, J. F. and Morgan, R. G. (1987) ‘On-line measurement of dynamic rheological properties during food extrusion’, J. Food Proc. Eng. 10, 21–26.

    Article  Google Scholar 

  • Sweat, V. E. (1986) ‘Thermal properties of foods’, in M. A. Rao and S. S. H. Rizvi (eds.), Engineering Properties of Foods, Marcel Dekker, New York, pp. 49–87.

    Google Scholar 

  • Tayeb, J., Vergnes, B. and Della Valle, G. (1988) ‘Theoretical computation of the isothermal flow through the reverse screw element of a twin screw extrusion cooker’, J. Food Sci. 53, 616–625.

    Article  Google Scholar 

  • Toledo, R., Cabot, J. and Brown, D. (1977) ‘Relationship between composition, stability and rheological properties of raw comminuted meat batters’, J. Food Sci. 42, 725–727.

    Article  Google Scholar 

  • Tsao, T. F., Harper, J. M. and Repholz, K. M. (1978) ‘The effects of screw geometry on extruder operational characteristics’, AIChE Symp. Ser. 74 (172), 142–147.

    Google Scholar 

  • Vergnes, B. and Villemaire, J. P. (1987) ‘Etude du comportement visqueux de l’amidon fondu en phase peu hydratee’, in P. Colonna (ed.), Cuisson-extrusion, Institut National de la Recherche Agronomique, Paris, pp. 108–117.

    Google Scholar 

  • Wagner, L. L. (1987) ‘Numerical modeling of the cooking extrusion of a biopolymer’, Virginia Polytechnic Inst., Blacksburg, Dist. Abt. Int. B48 (5), 1444–1445.

    Google Scholar 

  • Wallapapan, K., Sweat, V. E., Arce, J. A. and Dahm, P. F. (1984) ‘Thermal diffusivity and conductivity of defatted soy flour’, Trans. ASAE 27, 1610–1613.

    Google Scholar 

  • Yacu, W. A. (1985) ‘Modeling a twin screw co-rotating extruder’, J. Food Proc. Eng. 8, 1–21.

    Article  Google Scholar 

  • Ziminsky, R. D. and Eise, K. (1980) ‘Twin-screw extruder mechanisms in food processing’, Werner & Pfleiderer Corp., Ramsey, New Jersey.

    Google Scholar 

  • Zuilichem, D. J. van, Jager, T. and Stolp, W. (1988) ‘Residence time distributions in extrusion cooking, Part II, Single screw extruders processing maize and soya’, J. Food Eng. 7, 197–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Harper, J.M. (1989). Food Extrusion. In: Singh, R.P., Medina, A.G. (eds) Food Properties and Computer-Aided Engineering of Food Processing Systems. NATO ASI Series, vol 168. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2370-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2370-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7567-1

  • Online ISBN: 978-94-009-2370-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics