SAR Imaging of Ocean Waves in the Presence of Variable Currents

  • Gaspar R. Valenzuela


A review of the hydrodynamic and electromagnetic processes contributing to radar imaging of ocean waves in the presence of variable currents and nonlinear forcing (input from the wind, energy transfer by resonant nonlinear interactions, and dissipation) is given. Since many of the pertinent processes are quite complex and are areas of active research even today, the review is made as comprehensive as possible, but brief enough so as to bring the reader quickly up to date in the literature and still provide enough insight into the processes involved. Some new results on the development of the gravity-capillary wavenumber spectrum are also given.


Gravity Wave Synthetic Aperture Radar Synthetic Aperture Radar Image Wavenumber Spectrum Synthetic Aperture Radar Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpers, W., 1983: Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra. J. Geophys. Res., 88, 1745–1759.CrossRefGoogle Scholar
  2. Alpers, W. and K. Hasselmann, 1978: The two-frequency microwave technique for measuring ocean wave spectra from the airplane or satellite. Boundary Layer Meteorol., 13, 215–230.CrossRefGoogle Scholar
  3. Alpers, W. R. and I. Hennings, 1984: A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. J. Geophvs. Res., 89, 10529–10546.CrossRefGoogle Scholar
  4. Alpers, W., D. B. Ross and C. L. Rufenach, 1981: On the detectability of ocean surface.waves by real and synthetic aperture radar. J. Geophvs. Res., 86, 6481–6498.CrossRefGoogle Scholar
  5. Alpers, W., C. Bruening and K. Richter, 1986: Comparison of simulated and measured synthetic aperture radar image spectra with buoy-derived ocean wave spectra during the Shuttle Imaging Radar B mission. IEEE Trans., GE-24, 559–566.Google Scholar
  6. Bagg, M. T., A. C. Edwards, J. R. Perry, J. C. Scott, J. A. Stacey and J. O. Thomas, 1986: The SIR-B Mission: Towards an Understanding of Internal Waves in the Ocean. ARE TR-86122, Admiralty Research Establishment, Portland Dorset, 50 pp.Google Scholar
  7. Bass, F. G. and I. M. Fuks, 1979: Wave Scattering from Statistically Rough Surfaces. Pergamon Press, 525 pp.Google Scholar
  8. Beal, R. C, P. S. DeLeonibus and I. Katz, 1981: Spaceborne Synthetic Aperture Radar for Oceanography. Johns Hopkins Press, 215 pp.Google Scholar
  9. de Loor, G. P. and H. W. Brunsveld van Hulten, 1978: Microwave measurements over the North Sea. Boundary-Layer Meteorol., 13, 119–131.CrossRefGoogle Scholar
  10. DeSanto, J. A., 1979: Coherent scattering from rough surfaces. Mathematical Methods and Applications of Scattering Theory., J. A. DeSanto, A. W. Saenz, and W. W. Zachary, Eds., Springer-Verlag, 60–70.Google Scholar
  11. DeSanto, J. A. and G. S. Brown, 1986: Analytical techniques for multiple scattering from rough surfaces., Progress in Optics, 23, E. Wolf, Ed., 1–62.CrossRefGoogle Scholar
  12. Fu, L.-L. and B. Holt, 1982: Seasat Views Oceans and Sea Ice with Synthetic Aperture Radar. NASA/JPL Publication 81–120, Jet Propulsion Laboratory, Pasadena, CA 200 pp.Google Scholar
  13. Gastel, K. van, 1987a: Nonlinear interactions of gravity-capillary waves: Lagrangian theory and effects on the spectrum. J. Fluid Mech., 182, 449–523.Google Scholar
  14. Gastel, K. van, 1987b: Imaging of X band radar of subsurface features: a nonlinear phenomenon. J. Geophvs. Res., 92, 11857–11865.CrossRefGoogle Scholar
  15. Harger, R. O., 1970: Synthetic Aperture Radar Systems. Academic, 240 pp.Google Scholar
  16. Harger, R. O., 1980: The synthetic aperture radar image of time-variant scenes. Radio Science, 15, 749–657.CrossRefGoogle Scholar
  17. Hasselmann, K., 1963: On the non-linear energy transfer in a gravity wave spectrum. Part 3. J. Fluid Mech., 15, 385–398.CrossRefGoogle Scholar
  18. Hasselmann, K., 1968: Weak-interaction theory of ocean waves. Basic Developments in Fluid Dynamics, M. Holt, Ed., Academic, 117–182.Google Scholar
  19. Hasselmann, K. et XV al., 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtch. Hvdrogr. Z., A8, No. 12, 95 pp.Google Scholar
  20. Hasselmann, K., R. K. Raney, W. J. Plant, W. Alpers, R. A. Schuchman, D. R. Lyzenga, C. L. Rufenach and M. J. Tucker, 1985: Theory of synthetic aperture radar ocean imaging: a MARSEN view. J. Geophys. Res., 90, 4659–4686.CrossRefGoogle Scholar
  21. Holliday, D., G. St-Cyr and N. E. Woods, 1986: A radar ocean imaging model for small to moderate incidence angles. Int. J. Remote Sensing, 7, 1809–1834.CrossRefGoogle Scholar
  22. Holliday, D., G. St-Cyr and N. E. Woods, 1987: Comparison of a new radar ocean imaging model with SARSEX internal wave image data. Int. J. Rem. Sens., 8, 1423–1430.CrossRefGoogle Scholar
  23. Hughes, B. A., 1978: The effect of internal waves on surface wind waves 2. theoretical analysis. J. Geophys. Res., 83, 455–465.CrossRefGoogle Scholar
  24. Ivanov, A. V., 1982: On the synthetic aperture radar imaging of ocean surface waves. IEEE Trans., OE-7, 96–103.Google Scholar
  25. Jain, A., 1981: SAR imaging of ocean waves: theory. IEEE Trans., 0E-6, 130–139.Google Scholar
  26. Keller, W. C. and J. W. Wright, 1975: Microwave scattering and the straining of wind-generated waves. Radio Sci., 10, 139–147.CrossRefGoogle Scholar
  27. Keller, W. C., W. J. Plant and D. E. Weissman, 1985: The dependence of X band microwave sea return on atmospheric stability and sea state. J. Geophvs. Res., 90, 1019–1029.CrossRefGoogle Scholar
  28. Komen, G. J., S. Hasselmann and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 1271–1285.CrossRefGoogle Scholar
  29. Larson, T. R., L. I. Moskowitz and J. W. Wright, 1976: A note on SAR imagery of the ocean. IEEE Trans., AP-24, 393–394.Google Scholar
  30. Lee, J. K. and J. A. Kong, 1985a: Active microwave remote sensing of an anisotropic random medium layer. IEEE Trans., GE-23, 910–923.Google Scholar
  31. Lee, J. K. and J. A. Kong, 1985b: Passive microwave remote sensing of an anisotropic random medium layer. IEEE Trans., GE-23, 924–932.Google Scholar
  32. Lee, J. K. and J. A. Kong, 1985c: Electromagnetic wave scattering in a two-layer anisotropic random medium. J. Opt. Soc. Am. A., 2, 2171–2186.CrossRefGoogle Scholar
  33. Phillips, O. M., 1981: The structure of short gravity waves on the ocean surface. Spaceborne Synthetic Aperture Radar for Oceanography. R. C. Beal, P. S. DeLeonibus and I. Katz. Eds., Johns Hopkins Press, 24–31.Google Scholar
  34. Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr., 14, 1425–1433.CrossRefGoogle Scholar
  35. Plant, W. J., 1980: On the steady-state energy balance of short gravity wave systems. J. Phys. Oceanogr., 10, 1340–1352.CrossRefGoogle Scholar
  36. Plant, W. J. and W. C. Keller, 1983: The two-scale radar wave probe and SAR imagery of the ocean. J. Geophys. Res., 88, 9776–9784.CrossRefGoogle Scholar
  37. Robinson, I. S., 1981: Tidal vorticity and residual circulation. Deep Sea Res., 28A, 195–212.Google Scholar
  38. Rotheram, S., 1983: Theory of SAR ocean wave imaging. Satellite Microwave Remote Sensing. T. D. Allan, Ed., Ellis Horwood, 155–186.Google Scholar
  39. SWAMP Group, 1985: Ocean Wave Modeling, Plenum Press, 256 pp.Google Scholar
  40. SWIM Group, 1985: Shallow water intercomparison of wave models. The Ocean Surface. Y. Toba and H. Mitsuyasu, Eds., Riedel, 201–220.Google Scholar
  41. Sakai, T. M. Koseki, and Y. Iwagaki, 1983: Irregular wave refraction due to current. J. Hydr. Eng., 109, 1203–1215.CrossRefGoogle Scholar
  42. Thompson, D. R., 1988: Calculation of radar backscatter modulations from internal waves. J. Geophys. Res., 93, in press.Google Scholar
  43. Thompson, D. R., B. L. Gotwols and R. E. Sterner, 1988: A comparison of measured surface wave spectral modulations with predictions from a wave-current interaction model. J. Geophys. Res., 93, in press.Google Scholar
  44. Tomiyasu, K., 1978: Tutorial review of synthetic aperture radar (SAR) with applications to imaging of the ocean surface. IEEE Proc., 66, 563–583.CrossRefGoogle Scholar
  45. Valenzuela, G. R., 1978a: Theories for the interaction of electromagnetic and oceanic waves: review. Boundary-Layer Meteorol., 13, 61–85.CrossRefGoogle Scholar
  46. Valenzuela, G. R., 1978b: Scattering of electromagnetic waves from the ocean. Surveillance of Environmental Pollution and Resources by Electromagnetic Waves, T. Lund, Ed., Riedel, 199–226.Google Scholar
  47. Valenzuela, G. R., 1985: Microwave sensing of the ocean surface. The Ocean Surface. Y. Toba and H. Mitsuyasu, Eds., Riedel, 233–244.Google Scholar
  48. Valenzuela, G. R. and M. B. Laing, 1972: Nonlinear energy transfer in gravity-capillary wave spectra, with applications. J. Fluid Mech., 54, 507–520.CrossRefGoogle Scholar
  49. Valenzuela, G. R. and J. W. Wright, 1979: Modulation of short gravity-capillary waves by longer-scale periodic flows — a higher order theory. Radio Science, 14, 1099–1110.CrossRefGoogle Scholar
  50. Valenzuela, G. R. and D. T. Chen, 1985: The Effect of Atmospheric Stability on the Modulation of Microwave Backscatter. North American Radio Science Mtg. (CNC & USNC/URSI), Vancouver, Canada, 17–21 June.Google Scholar
  51. Valenzuela, G. R., D. T. Chen, W. D. Garrett and J. A. C. Kaiser, 1983: Shallow water bottom topography from radar imagery. Nature, 303, 687–689.CrossRefGoogle Scholar
  52. Valenzuela, G. R., W. J. Plant, D. L. Schuler, D. T. Chen and W. C. Keller, 1985: Microwave probing of shallow water bottom topography in the Nantucket Shoals. J. Geophys. Res., 90, 4931–4942.CrossRefGoogle Scholar
  53. Weber, S. L., 1988: The energy balance of finite depth gravity waves. J. Geophvs. Res., 93, 3601–3607.CrossRefGoogle Scholar
  54. Young, I. R., 1988: A shallow water spectral wave model. J. Geophys. Res., 93, 5113–5129.CrossRefGoogle Scholar
  55. Zimmerman, J. T. F., 1980: Vorticity transfer by tidal currents over an irregular topography. J. Marine Res., 38, 601–630.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Gaspar R. Valenzuela
    • 1
  1. 1.Space Sensing BranchNaval Research LaboratoryUSA

Personalised recommendations