Skip to main content

Transport of proteins into chloroplasts

  • Chapter
Molecular Biology of Photosynthesis

Abstract

The import of cytoplasmically synthesized proteins into chloroplasts involves an interaction between at least two components; the precursor protein, and the import apparatus in the chloroplast envelope membrane. This review summarizes the information available about each of these components. Precursor proteins consist of an amino terminal transit peptide attached to a passenger protein. Transit peptides from various precursors are diverse with respect to length and amino acid sequence; analysis of their sequences has not revealed insight into their mode of action. A variety of foreign passenger proteins can be imported into chloroplasts when a transit peptide is present at the amino terminus. However, foreign passenger proteins are not imported as efficiently as natural passenger proteins, and some chimeric precursor proteins are not imported into chloroplasts at all. Therefore, the passenger protein, as well as the transit peptide, influences the import process. Import begins by binding of the precursor to the chloroplast surface. It has been suggested that this binding is mediated by a receptor, but evidence to support this hypothesis remains incomplete and a receptor protein has not yet been characterized. Protein translocation requires energy derived from ATP hydrolysis, although there are conflicting reports as to where hydrolysis occurs and it is unclear how this energy is utilized. The mechanism(s) whereby proteins are translocated across either the two envelope membranes or the thylakoid membrane is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EPSP:

5-enolpyruvyulshikimate-3-phosphate

LHCP:

Cholorophyll a/b binding protein of the light-harvesting complex

NPT-II:

Neomycin phosphotransferase II

PC:

Plastocyanin

Pr:

Precursor

Rubisco:

Ribulose-1,5,-bisphosphate carboxylase /oxygenase

SS:

Small subunit of Rubisco

References

  • Anderson S and Smith SM (1986) Synthesis of the small subunit of ribulosebisphosphate carboxylase from genes cloned into plasmids containing the SP6 promoter. Biochem J 240: 709–715

    PubMed  CAS  Google Scholar 

  • Balch WE, Elliott MM and Keller DS (1986) ATP-coupled transport of vesicular stomatitis virus G protein between the endopoasmic reticulum and the golgi. J Biol Chem 261: 14681–14689

    PubMed  CAS  Google Scholar 

  • Balch WE and Keller DS (1986) ATP-coupled transport of vesicular stomatitis virus G progein: Functional boundaries of secretory compartments. J Bio Chem 261: 14690–14696

    CAS  Google Scholar 

  • Berry-Lowe SL, McKnight TD, Shah DM and Meagher RB (1982) The nucleotide sequence, expression, and evolution of one member of a multigene family encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean. J Mol Appl Genet 1: 483–498

    PubMed  CAS  Google Scholar 

  • Bitsch A and Kloppstech K (1986) Transport of proteins into chloroplasts. Reconstitution of the binding capacity for nuclear-coded precursor proteins after solubilization of envelopes with detergents. Eur J Cell Biol 40: 160–166

    CAS  Google Scholar 

  • Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77: 1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Blobel G and Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67: 835–851

    Article  PubMed  CAS  Google Scholar 

  • Boyle SA, Hemmingsen SM and Dennis DT (1986) Uptake and processing of the precursor to the small subunit of ribulose 1,5-bisphosphate carboxylase by leucoplasts from the endosperm of developing caster oil seeds. Plant Physiol 81: 817–822

    Article  PubMed  CAS  Google Scholar 

  • Broglie R, Coruzzi G, Lamppa G, Keith B and Chua N-H (1983) Structural analysis of nuclear genes coding for the precursor to the small subunit of wheat ribulose-1,5-bisphosphate carboxylase. Bio/Tech 1: 55–61

    Article  Google Scholar 

  • Cashmore AR (1984) Structure and expression of a pea nuclear gene encodeing a chlorophyll a/b-binding polypeptide. Proc Natl Acad Sci USA 81: 2960–2964

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Broadhurst MK and Gray RE (1978) Cell-free synthesis of leaf protein: identification of an apparent precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75: 655–659

    Article  PubMed  CAS  Google Scholar 

  • Cashmore A, Szabo L, Timko M, Kausch A, Van den Broeck G, Schreier P, Bohnert H, Herrera-Estrella L, Van Montagu M and Schell J (1985) Import of polypeptides into chloroplasts. Bio/Tech 3: 803–808

    Article  CAS  Google Scholar 

  • Chen L and Tai PC (1986) Effects of nucleotides on ATP-dependent protein translocation into Escherichia coli membrane vesicles. J Bact 168: 828–832

    PubMed  CAS  Google Scholar 

  • Chua N-H and Schmidt GW (1978) Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose-1, 5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75: 6110–6114

    Article  PubMed  CAS  Google Scholar 

  • Chua N-H and Schmidt GW (1979) Transport of proteins into mitochondria and chloroplasts. J Cell Biol 81: 461–483

    Article  PubMed  CAS  Google Scholar 

  • Cline K (1986) Import of proteins into chloroplasts: Membrane integration of a thylakoid precursor protein in chloroplast lysates. J Bio Chem 261: 14804–14810

    CAS  Google Scholar 

  • Cline K, Werner-Washburne M, Lubben TH and Keegstra K (1985) Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J Biol Chem 260: 3691–3696

    PubMed  CAS  Google Scholar 

  • Cornwell KL and Keegstra K (1987) Evidence that a chloroplast surface protein is associated with a specific binding site for the precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase. Plant Physiol 85: 780–785

    Article  PubMed  CAS  Google Scholar 

  • della-Cioppa G, Bauer SC, Klein BK, Shah DM, Fraley RT and Kishore GM (1986) Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc Natl Acad Sci USA 83: 6873–6877

    Article  PubMed  CAS  Google Scholar 

  • della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT and Kishore GM (1987a) Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/Tech 5: 579–584

    Article  CAS  Google Scholar 

  • della-Cioppa G, Kishore GM, Beachy RN and Fraley RT 91987b) Protein trafficking in Plant Cells. Pl Physiol 84: 965–968

    Google Scholar 

  • Dobberstein B, Blobel G and Chua N-H (1977) In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 74: 1082–1085

    Article  PubMed  CAS  Google Scholar 

  • Douglas MG, McCammon MT and Vassarotti A (1986) Targeting proteins into mitochondria. Micro Rev 50: 166–178

    CAS  Google Scholar 

  • Eilers M and Schatz G (1986) Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322: 228–232

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Oppliger W and Schatz G (1987) Both ATP and an energized inner membrane are required to import a purified precursor protein into mitochondria. EMBO J 6: 1073–1077

    PubMed  CAS  Google Scholar 

  • Flügge UI and Hinz G (1986) Energy dependence of protein translocation into chloroplasts. Eur J Biochem 160: 563–570

    Article  PubMed  Google Scholar 

  • Gasser SM, Daum G and Schatz G (1982) Import of proteins into mitochondria: Energy dependent uptake of precursors by isolated mitochondria. J Biol Chem 257: 13034–13041

    PubMed  CAS  Google Scholar 

  • Grossman A, Bartlett S and Chua N-H (1980) Energy-dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts. Nature 285: 625–628

    Article  CAS  Google Scholar 

  • Grossman AR, Bartlett SG, Schmidt GW, Mullet JE and Chua N-H (1982) Optimal conditions for post-translational uptake of proteins by isolated chloroplasts: In vitro synthesis and transport of plastocyanin, ferredoxin-NADP oxidoreductase, and fructose-1,6-bispho-sphatase. J Biol Chem 257: 1558–1563

    PubMed  CAS  Google Scholar 

  • Hansen W, Garcia PD and Walter P (1986) in vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-α-factor. Cell 45: 397–406

    Article  PubMed  CAS  Google Scholar 

  • Highfield PE and Ellis RJ (1978) Synthesis and transport of the small subunit of chloroplast ribulose bisphosphate carboxylase. Nature 271: 420–424

    Article  CAS  Google Scholar 

  • Jansen T, Rother C, Steppuhn J, Reinke H, Beyreuther K, Jansson C, Andersson B and Herrmann RG (1987) Nucleotide sequence of cDNA clones encoding the complete ‘23 kDa’ and ‘16 kDa’ precursor proteins associated with the photosynthetic oxygen-evolving complex from spinach. FEBS Lett 216: 234–240

    Article  CAS  Google Scholar 

  • Karlin-Neumann GA and Tobin EM (1986) Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework. EMBO J 5: 9–13

    PubMed  CAS  Google Scholar 

  • Kloppstech K and Bitsch A (1986) Crosslinking of envelope proteins presumably involved in the binding of nuclear coded chloroplast precursor proteins. In: Regulation of Chloroplast Differentiation, pp 235–240. Alan R. Liss, Inc.

    Google Scholar 

  • Krieg PA and Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucl Acids Res 12: 7057–7071

    Article  PubMed  CAS  Google Scholar 

  • Kuntz M, Simmons A, Schell J and Schreier PH (1986) Targeting of protein to chloroplasts in transgenic tobacco by fusion to mutated transit peptide. Mol Gen Genet 205: 454–460

    Article  CAS  Google Scholar 

  • Lubben TH and Keegstra K (1986) Efficient in vitro import of a cytosolic heat shock protein into pea chloroplasts. Proc Natl Acad Sci USA 83: 5502–5506

    Article  PubMed  CAS  Google Scholar 

  • Lubben T, Bansberg J and Keegstra K (1987) Stop-transfer regions do not halt translocation of proteins into chloroplasts. Science 238: 1112–1114

    Article  PubMed  CAS  Google Scholar 

  • Lubben T, Gatenby A, Ahlquist P and Keegstra K (1988) Imported large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, but not imported coupling factor beta subunti, are assembled into holoenzyme in isolated chloroplasts. EMBO J (in press)

    Google Scholar 

  • Mishkind ML, Wessler SR and Schmidt GW (1985) Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5-bisphosphate carboxylase small subunit of Chlamydomonas. J Cell Biol 100: 226–234

    Article  PubMed  CAS  Google Scholar 

  • Nelson N and Schatz G (1979) Energy-dependent processing of cytoplasmically made precursors to mitochondrial proteins. Biochemistry 76: 4365–4369

    CAS  Google Scholar 

  • Pain D and Blobel G (1987) Protein import into chloroplasts requires a chloroplast ATPase. Proc Natl Acad Sci USA 84: 3288–3292

    Article  PubMed  CAS  Google Scholar 

  • Pfanner N and Neupert W (1985) Transport of proteins into mitochondria: a potassium difussion potential is able to drive the import of ADP/ATP carrier. EMBO J 4: 2819–2825

    PubMed  CAS  Google Scholar 

  • Pfanner N and Neupert W (1986) Transport of F1-ATPase subunit ß into mitochondria depends on both a membrane potential and nucleoside triphosphates. FEBS Lett 209: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Pfisterer J, Lachmann P and Kloppstech K (1982) Transport of proteins into chloroplasts. Binding of nuclear-coded chloroplast proteins to the chloroplast envelope. Eur J Biochem 120: 143–148

    Article  Google Scholar 

  • Reiss B, Wasmann CC and Bohnert HJ (1987) Regions in the transit peptide of SSU essential for transport into chloroplasts. Mol Gen Genet 209: 116–121

    Article  PubMed  CAS  Google Scholar 

  • Robinson C and Ellis RJ (1984) Transport of proteins into chloroplasts: The effect of incorporation of amino acid analogues on the import and processing of chloroplast polypeptides. Eur J Biochem 142: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Robinson C and Ellis RJ (1985) Transport of proteins into chloroplasts: The precursor of small subunit of ribulose bisphosphate carboxylase is processed to the mature size in two steps. Eur J Biochem 152: 67–73

    Article  PubMed  CAS  Google Scholar 

  • Roise D, Horvath SJ, Tomich JM, Richards JH and Schatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5: 1327–1334

    PubMed  CAS  Google Scholar 

  • Rothblatt JA and Meyer DI (1986) Secretion in yeast: translocation and glycosylation of prepro-α-factor in vitro can occur via an ATP-dependent post-translational mechanism. EMBO J 5: 1031–1036

    PubMed  CAS  Google Scholar 

  • Scherer DE and Knauf VC (1987) Isolation of a cDNA clone for the acyl carrier protein-I of spinach. Plant Mol Bio 9: 127–134

    Article  CAS  Google Scholar 

  • Schindler C, Hracky R and Soll J (1987) Protein transport in chloroplasts: ATP is prerequisit. Z Naturforsch 42c: 103–108

    Google Scholar 

  • Schlenstedt G and Zimmermann R (1987) Import of frog prepropeptide GLa into microsomes requires ATP but does not involve docking protein or ribosomes. EMBO J 6: 699–703

    PubMed  CAS  Google Scholar 

  • Schleyer M, Schmidt B and Neupert W (1982) Requirement of a membrane potential for the posttranslational transfer of proteins into mitochondria. Eur J Biochem 125: 109–116

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GW, Bartlett SG, Grossman AR, Cashmore AR and Chua N-H (1981) Biosynthetic pathways of two polypeptide subunits of the light-harvesting chloropyll a/b protein complex. J Cell Biol 91: 468–478

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GW and Mishkind ML (1986) The transport of proteins into chloroplasts. Annu Rev Biochem 55: 879–912

    Article  PubMed  CAS  Google Scholar 

  • Schreier PH and Schell J (1986) Use of chimaeric genes harbouring small subunit transit peptide sequences to study transport in chloroplasts. Phil Trans R Soc Lond B313: 429–432

    Google Scholar 

  • Schreier PH, Seftor EA, Schell J and Bohnert HJ (1985) The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J 4: 25–32

    PubMed  CAS  Google Scholar 

  • Singer SJ, Maher PA and Yaffe MP (1987) On the translocation of proteins across membranes. Proc Natl Acad Sci USA 84: 1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S (1986) Transport of nuclear-encoded chloroplast proteins. Ph.D. Thesis, Rijksuniversiteit te Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Smeekens S, Bauerle C, Hageman J, Keegstra K and Weisbeek P (1986) The Role of the transit peptide in the routing of precursors toward different chlorplast compartments. Cell 46: 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S, de Groot M, van Binsbergen J and Weisbeek P (1985a) Sequence of the precursor of the chloroplast thylakoid lumen protein plastocyanin. Nature 317: 456–458.

    Article  CAS  Google Scholar 

  • Smeekens S, van Binsbergen J and Weisbeek P (1985b) The plant ferredoxin precursor; nucleotide sequence of a full length cDNA clone. Nucl Acids Res 13: 3179–3194

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S, van Steeg H, Bauerle C, Bettenbroek H, Keegstra K and Weisbeek P (1987) Import into chloroplasts of a yeast mitochondrial protein directed by ferredoxin and plastocyanin transit peptides. Plant Mol Bio 9:377–388

    Article  CAS  Google Scholar 

  • Tyagi A, Hermans J, Steppuhn J, Jannson C, Vater F and Herrmann RG (1987) Nucleotide sequence of cDNA clones encoding the complete “3 kDa” precursor protein associated with the photosynthetic oxygen-evolving complex from spinach. Mol Gen Genet 207: 288–293

    Article  CAS  Google Scholar 

  • van den Broeck G, Timko MP, Kausch AP, Cashmore AR, Van Montagu M and Herrera-Estrella L (1985) Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature 313: 358–363.

    Article  PubMed  Google Scholar 

  • Verner K and Schatz G (1987) Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane, but no added ATP. EMBO J 6: 2449–2456.

    PubMed  CAS  Google Scholar 

  • von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5: 1335–1342

    Google Scholar 

  • Wasmann CC, Reiss B, Bartlett SG and Bohnert HJ (1986) The importance of the transit peptide and the transported protein for protein import into chloroplasts. Mol Gen Genet 205:446–453

    Article  CAS  Google Scholar 

  • Waters MG and Blobel G (1986) Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J cell Biol 102: 1543–1550.

    Article  PubMed  CAS  Google Scholar 

  • Wickner WT and Lodish HF (1985) Multiple mechanisms of protein insertion into and across membranes. Science 230: 400–407.

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Ichihara S and Mizushima S (1987) In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP. J Biol Chem 262: 2358–2362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lubben, T.H., Theg, S.M., Keegstra, K. (1988). Transport of proteins into chloroplasts. In: Govindjee (eds) Molecular Biology of Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2269-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2269-3_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7517-6

  • Online ISBN: 978-94-009-2269-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics