Advertisement

Microwave Remote Sensing of Soil Moisture

  • Thomas Schmugge
Part of the Ispra Courses book series (ISPA)

Abstract

Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelengths, there is a strong dependence of the thermal emission and radar back-scatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques has been demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research has indicated that it is possible to obtain 5 or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

Keywords

Soil Moisture Remote Sensing Root Mean Square Brightness Temperature Microwave Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armand, N.A., Oleksich, V.N., Shinkaryuk, V.G. and Shutko, A.M., 1981: ‘Remote determination of the moisture content of soils in the irrigated lands of Moldavia’, Gidromekh. Melior. (NASA Tech. Transl.) 58–60.Google Scholar
  2. Barton, I.J., 1978: ‘A case study comparison of microwave radiometer measurements over bare and vegetated surface’, J. Geophys. Res., 83 3513–3517.CrossRefGoogle Scholar
  3. Bernard, R., Vauclin, M. and Vidal-Madjar, D., 1981: ‘Possible use of active microwave remote sensing data for prediction of regional evaporation by numerical simulation of soil water movement in the unsaturated zone’. Water Resources Res., 17, 1603–1610.CrossRefGoogle Scholar
  4. Bernard, R., Martin, Ph., Thony, J.L., Vauclin, M. and Vidal-Madjar, D., 1982: ‘C-band radar for determining surface soil moisture’. Rem. Sens. Environ., 12, 189–200.CrossRefGoogle Scholar
  5. Bernard, R., Soares, J.V. and Vidal-Madjar, D., 1986: ‘Differential bare field drainage properties from airborne microwave observations’. Water Resources Res., 22, 869–875.CrossRefGoogle Scholar
  6. Blanchard, B.J., McFarland, M.J., Schmugge, T.J. and Rhoades, E., 1981: ‘Estimation of soil moisture with API algorithms and microwave emission’. Water Resources Bull., 17 767–774.Google Scholar
  7. Caillo, P.J. and O’Neill, P.E., 1986: ‘Estimating soil hydraulic parameters using passive microwave data’, IEEE Trans. Geosci. Remote Sensing, GE-24, 930–936.CrossRefGoogle Scholar
  8. Choudhury, B.J., Schmugge, T.J. and Mo, T., 1982: ‘A parameterization of effective soil temperature for microwave emission’, J. Geophys. Res., 87, 1301–1304.CrossRefGoogle Scholar
  9. Colwell, R.N. (Ed.), 1983: Manual of Remote Sensing, 2nd ed.. Am. Soc. of Photogrammetry, Falls Church, Virginia.Google Scholar
  10. Dobson, M.C. and Ulaby, F.T., 1981: ‘Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part III, soil tension’, IEEE Trans. Geosci. Remote Sensing, GE-19, 51–61.CrossRefGoogle Scholar
  11. Dobson, M.C., Ulaby, F.T., Hallikainen, M.T. and Reyes, M., 1985: ‘Microwave dielectric behavior of wet soil: Part II, dielectric mixing models’, IEEE Trans. Geosci. Remote Sensing, GE-23, 35–46.CrossRefGoogle Scholar
  12. Dobson, M.C. and Ulaby, F.T., 1986: ‘Active microwave soil moisture research’, IEEE Trans. Geosci. Remote Sensing, GE-24, 23–36.CrossRefGoogle Scholar
  13. Dobson, M.C. and Ulaby, F.T., 1986: ‘Preliminary evaluation of the SIR-B response to soil moisture, surface roughness, and crop canopy cover’, IEEE Trans. Geosci. Remote Sensing, GE-24, 517–526.CrossRefGoogle Scholar
  14. Fung, A.K. and Eom, H.J., 1985: ‘A comparison between active and passive sensing of soil moisture from vegetated terrains’, IEEE Trans. Geosci. Remote Sensing, GE-23, 768–775.CrossRefGoogle Scholar
  15. Jackson, T.J., 1980: ‘Profile soil moisture from surface measurements’, J. Irrigation Drainage Div., IR-2, ASCE, 81–92.Google Scholar
  16. Jackson, T.J., Schmugge, T.J. and Wang, J.R., 1982: ‘Passive microwave sensing of soil moisture under vegetation canopies’. Water Resources Res., 18(4), 1137–1142.CrossRefGoogle Scholar
  17. Jackson, T.J. and O’Neill, P.E., 1986: ‘Microwave dielectric model for aggregated soils’, IEEE Trans. Geosci. Remote Sensing, GE-24, 920–929.CrossRefGoogle Scholar
  18. Jackson, T.J., Hawley, M.E. and O’Neill, P.E., 1987: ‘Preplanting soil moisture using passive microwave sensors’, Water Resources Bull., 23, 11–19.Google Scholar
  19. Jackson, T.J. and O’Neill, P.E., 1987: ‘Salinity effects on the microwave emission of soil’, IEEE Trans. Geosci. Remote Sensing, GE-25, 214–220.CrossRefGoogle Scholar
  20. Kondratyev, K.Y., Malentyev, V.V., Rabinovich, Y. and Shulgina, E.M., 1977: ‘Passive microwave remote sensing of soil moisture’, in Proc. 11th Int. Symp. Remote Sensing Environ., 2, 164–1661.Google Scholar
  21. Mo, T., Coudhury, B.J., Schmugge, T.J., Wang, J.R. and Jackson, T.J., 1982: ‘A model for microwave emission from vegetation covered fields’, J. Geophys. Res., 87, 11229–11237.CrossRefGoogle Scholar
  22. Mo, T., Schmugge, T.J. and Wang, J.R., 19: ‘Calculation of the microwave brightness temperature of rough soil surfaces: bare field’, IEEE Trans. Geosci. Remote Sensing, GE-25, 47–54.Google Scholar
  23. Newton, R.W., Black, Q.R., Makanvand, S., Blanchard, A.J. and Jean, B.R., 1982: ‘Soil moisture information and thermal microwave emission’, IEEE Trans. Geosci. Remote Sensing, GE-25, 275–281.CrossRefGoogle Scholar
  24. Owe, M., Jones, E.B. and Schmugge, T.J., 1982: ‘Soil moisture patterns observed in Hand County, South Dakota’, Water Resources Bull., 18, 949–954.Google Scholar
  25. Owe, M. and Schmugge, T.J., 1983: ‘Microwave radiometer response to soil moisture at the 21-cm wavelength’, presented at the Amer. Soc. Agronomy, Annual meeting (Washington, D.C.) 1983.Google Scholar
  26. Prevot, L., Bernard, R., Taconet, O. and Vidal-Madjar, D., 1984: ‘Evaporation from a bare soil evaluated from a soil water transfer model using remotely sensed surface soil moisture data’. Water Resources Res., 20, 311–316.CrossRefGoogle Scholar
  27. Schmugge, T.J., 1980: ‘Effect of soil texture on the microwave emission from soils’, IEEE Trans. Geosci. Remote Sensing, GE-18, 353–361.CrossRefGoogle Scholar
  28. Schmugge, T.J., O’Neill, P.E. and Wang, J.R., 1986: ‘Passive microwave soil moisture research’, IEEE Trans. Geosci. Remote Sensing, GE-24, 12–22.CrossRefGoogle Scholar
  29. Soares, J.V., Bernard, R., Taconet, O., Vidal-Madjar, D. and Weill, A., 1987: ‘Estimation of bare soil evaporation from airborne measurements’, to be published in J. of Hydrology.Google Scholar
  30. Theis, S.W., Blanchard, B.J. and Blanchard, A.J., 1986: ‘Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare fields’, IEEE Trans. Geosci. Remote Sensing, GE-24, 334–339.CrossRefGoogle Scholar
  31. Theis, S.W., Blanchard, B.J. and Newton, R.W., 1984: ‘Utilization of vegetation indices to improve microwave soil moisture estimates over agricultural lands’, IEEE Trans. Geosci. Remote Sensing, GE-22, 490–496.Google Scholar
  32. Ulaby, F.T., Batlivala, P.P. and Dobson, M.C., 1978: ‘Microwave back-scatter dependence on surface roughness, soil moisture, and soil texture: Part I, bare soil’, IEEE Trans. Geosci. Electron., GE-16, 286–295.CrossRefGoogle Scholar
  33. Ulaby, F.T., Bradley, G.A. and Dobson, M.C., 1979: ‘Microwave back-scatter dependence on surface roughness, soil moisture, and soil texture: Part II, vegetation covered soil’, IEEE Trans. Geosci. Electron., GE-17, 33–40.CrossRefGoogle Scholar
  34. Ulaby, F.T., Moore, R.K. and Fung, A.K., 1982–86: ‘Microwave remote sensing: Volumes I, II and III’, Artech House Inc., Dedham, Massachusetts.Google Scholar
  35. Ulaby, F.T., Aslam, A. and Dobson, M.C., 1982: ‘Effects of vegetation on the radar sensitivity to soil moisture’, IEEE Trans. Geosci. Remote Sensing, GE-20, 476–481.CrossRefGoogle Scholar
  36. Wang, J.R. and Schmugge, T.J., 1980: ‘An empirical model for the complex dielectric permittivity of soils as a function of water content’, IEEE Trans. Geosci. Remote Sensing, GE-18, 288–295.CrossRefGoogle Scholar
  37. Wang, J.R., 1985: ‘The effect of vegetation on soil moisture sensing from orbiting microwave radiometers’. Remote Sensing Environ., 11, 141–151.CrossRefGoogle Scholar
  38. Wang, J.R., Engman, E.T., Shuie, J.C., Rusek, M. and Steinmeier, C, 1986: ‘The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers’, IEEE Trans. Geosci. Remote Sensing, GE-24, 510–516.CrossRefGoogle Scholar
  39. Wang, J.R., 1987: ‘Passive microwave sensing of soil moisture: the frequency dependence of microwave penetration depth’, to be published in IEEE Trans. Geosci. Remote Sensing, GE-25.Google Scholar
  40. Wilheit, T.T., 1978: ‘Radiative transfer in a plane stratified dielectric’, IEEE Trans. Geosci. Electronics, GE-16, 138–143.CrossRefGoogle Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • Thomas Schmugge
    • 1
  1. 1.USDA-ARS Hydrology LaboratoryBeltsvilleUSA

Personalised recommendations