Radiation Budget at the Ground from Satellite Data

  • E. Raschke
Part of the Ispra Courses book series (ISPA)


More than ever before the modelling of climate and circulation processes requires accurate data on radiative energy exchanges between the earth’s surface and the atmosphere. Required accuracies are estimated to range between 2–20 Wm-2 for global and monthly averages. The four components of the radiation budget at the ground can still not be derived with sufficient accuracy from satellite measurements and from correlative data of conventional surface-based origin. The general possibilities are discussed in this paper. Basic research is still required to establish a reliable error budget, and ground truth is essential.


Satellite Data Surface Albedo International Satellite Cloud Climatology Project Cloudy Condition Monthly Weather Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briegleb, B.P., P. Minnis, v. Ramanathan and E. Harrison, 1986: ‘Comparison of Regional Clear-Sky Albedoes Inferred from Satellite Observations and Model Computations’, J. Climate Appl. Meteor., 25, 214–226.CrossRefGoogle Scholar
  2. Chou, Ming-Dan, 1985: ‘Surface Radiation in the Tropical Pacific’, J. Climate Appl. Meteor., 24, 83–92.CrossRefGoogle Scholar
  3. Darnell, W.L., S.K. Gupta, W.F. Staylor, 1983: ‘Downward Longwave Radiation at the Surface from Satellite Measurements’, J. Climate Appl. Meteor., 22, 1956–1960.CrossRefGoogle Scholar
  4. Darnell, W.L., S.K. Gupta, W.F. Staylor, 1986: ‘Downward Longwave Surface Radiation from Sun-Synchronous Satellite Data: Validation of Methodology’, J. Climate Appl. Meteor., 25, 1012–1020.CrossRefGoogle Scholar
  5. Diekmann, F., E. Raschke, H. Woick, 1986: ‘Operational Mapping of Global Radiation over Central Europe’, Meteor. Rundschau, 39, 59–63.Google Scholar
  6. Ellingson, R.G., 1981: ‘On Estimating the Radiation Budget at the Surface Using Satellite Observed Radiance’, University of Wisconsin-Madison.Google Scholar
  7. Gandin, L.S. and Kagan, 1976: ‘Statistical Methods of Interpreting Meteorological Data’, Gidrometeoizdat, Leningrad, 359.Google Scholar
  8. Geleyn, J.F. and H.-J. Preuß, 1983: ‘A Near Data Set of Satellitederived Surface Albedo Values of Operational Use at ECMWF’, Arch. Meteor. Geophys. Bioklim., Ser. A, 32, 353–359.CrossRefGoogle Scholar
  9. Gube, M., J. Schmetz and E. Raschke, 1980: ‘Comments on “The Albedo of Water as Function of Latitude”‘, Monthly Weather Review, 108, 830–831.CrossRefGoogle Scholar
  10. Hahn, C.J., S.G. Warren, J. London and R. Chervin, 1983: Atlas of Simultaneous Occurrence of Different Cloud Types over the Ocean, NCAR/TN-201-STR, National Center of Atmospheric Research, Boulder, Colorado, USA.Google Scholar
  11. Harrison, E.F., P. Minnis and G.G. Gibson, 1983: ‘Orbital and Cloud Cover Sampling Analyses for Multisatellite Earth Radiation Budget Experiments’, J. of Spacecraft and Rockets, 20, 491–495.CrossRefGoogle Scholar
  12. Idso, S.B. and R.D. Jackson, 1969: ‘Thermal Radiation from the Atmosphere’, J. Geophys. Res., 74, 5397–5403.CrossRefGoogle Scholar
  13. Kondratiev, K. Ya, J.F. Mizonova and A.N. Otto, 1964: ‘Spectral Albedo of National Surfaces’, P.A. Geoph., 59, 207–286.CrossRefGoogle Scholar
  14. Kukla, K. and D. Robinson, 1980: ‘Annual Cycle of Surface Albedo’, Monthly Weather Review, 108, 56–68.CrossRefGoogle Scholar
  15. Martin, M. and P. Berdahl, 1984: ‘Characteristics of Infrared Sky Radiation in the United States’, Solar Energy, 33, 321–336.CrossRefGoogle Scholar
  16. Mintz, Y., 1982: ‘The Sensitivity of Numerically Simulated Climates to Land Surface Conditions’, in Eagleson (ed.): Land Surface Processes Atmospheric General Circulation Models, Cambridge University Press.Google Scholar
  17. Moser, W. and E. Raschke, 1984: ‘Incident Solar Radiation over Europe Estimated from METEOSAT-Data’, J. Climate Appl. Meteor., 23, 166–170.CrossRefGoogle Scholar
  18. Monteith, J.L., 1960: ‘An Empirical Method for Estimating Longwave Radiation Exchanges in the British Isles’, Quart. J. R. Meteorol. Soc., 87, 171–179.CrossRefGoogle Scholar
  19. Pinker, R. T. and L.A. Corio, 1984: ‘Surface Radiation Budget from Satellites’, Monthly Weather Review, 102, 209–215.CrossRefGoogle Scholar
  20. Pinty, B. and G. Szejwack, 1985: ‘A New Technique for Inferring Surface Albedo from Satellite Observations’, J. Climate Appl. Meteor., 24, 74–75.CrossRefGoogle Scholar
  21. Pinty, B. and G. Szejwack, 1985: ‘Surface Albedo over the Sahel from METEOSAT Radiances’, J. Climate Appl. Meteor., 24, 108–113,CrossRefGoogle Scholar
  22. Preuß, H.-J., E. Raschke and M. Daniel, 1984: ‘Studies of Spaceborne Radiation Budget Measurements’, Meteor. Rundschau, 37, 52–62.Google Scholar
  23. Preuß, H. and J.F. Geleyn, 1980: ‘Surface Albedoes Derived from Satellite Data and Their Impact on Forecast Models’, Arch. Meteor. Geophys. Bioklim., Ser.B, 29, 345–356.CrossRefGoogle Scholar
  24. Raschke, E., A. Gratzki and M. Rieland, 1987: ‘Estimates of Global Radiation at Ground from the Reduced Data Sets of the International Satellite Cloud Climatology Project’, J. of Climatology, 7, 205–214.CrossRefGoogle Scholar
  25. Raschke, E., 1986: ‘Mapping the Downwelling Atmospheric Radiation at the Earth’s Surface — A Research Strategy’, NASA-CR 178504, Langley Res. Center, Hampton, 21.Google Scholar
  26. Rockwood, A.A. and S.K. Cox, 1976: ‘Satellite Inferred Surface Albedo over Northwestern Africa’, Dep. Atm. Sci., Colorado State Univ., Fort Collins, Atmospheric Science, Paper 265, 63.Google Scholar
  27. Schiffer, R.A. and W.B. Rossow, 1985: ‘ISCCP Global Radiance Data Set: A New Resource for Climate Research’, Bull. Am. Meteor. Soc., 66, No. 12.Google Scholar
  28. Schmetz, P., 1984: ‘Großräumige Bestimmung der Gegenstrahlung aus Satelliten- und Analysedaten’, Diplomarbeit, Inst. Geoph. Und Meteorol. Univ. zu Köln.Google Scholar
  29. Schmetz, P., J. Schmetz and E. Raschke, 1986: ‘Estimation of Daytime Downward Longwave Radiation at the Surface from Satellite and Grid Point Data’, Theor. Appl. Climatol., 37, 136–149.CrossRefGoogle Scholar
  30. Shine, K.P., 1984: ‘Parametrisation of the Shortwave Flux over High Albedo Surfaces as a Function of Cloud Thickness and Surface Albedo’, Quart. J. R. Met. Soc., 110, 747–764.CrossRefGoogle Scholar
  31. Smith, W.L. and H.M. Woolf, 1983: ‘Geostationary Satellite Sounder (VAS) Observations of Longwave Radiation Flux Report on “Satellite Systems to Measure Rad. Budget Parameters and Climate Change Signals’”, Igls., Austria, WCP.Google Scholar
  32. Stuhlmann, R., M. Wiegner, H. Knottenberg, J. Wirth and D. Hennings, 1985: ‘Calculations of the Planetary Albedo from Satellite Radiance Measurements”, Adv. Space Res., I, 133–139.CrossRefGoogle Scholar
  33. Susskind, J., J. Rosenfield, D. Reuter and M.T. Chahine, 1982: “The GLAS Physical Inversion Method for Analysis of HIRS2/MSU Sounding Data’, NASA Techn. Memorandum 84936, Goddard Space Flight Center, Greebelt, Md.Google Scholar
  34. Susskind, J., J. Rosenfield, D. Reuter and M.T. Chahine, 1982: ‘The GLAS Physical Inversion Method for Analysis of HIRS2/MSU Sounding Data’, NASA Techn. Memorandum 84936, 101, Goddard Space Flight Center, Greenbelt, Md.Google Scholar
  35. Susskind, J. J. Rosenfield and D. Reuter, 1983: ‘An Accurate Radiation Transfer Model for Use in the Direct Physical Inversion of HIRS2 and MSU Temperature Sounding Data’, J. Geoph. Res., 88, 8550–8568 (C13).CrossRefGoogle Scholar
  36. WCP-48, 1984: ‘Report of the Meeting of Experts on the Future Activities of the World Radiation Centre’(WRC-Leningrad)’, WMO-Geneva.Google Scholar
  37. WCP-115, 1986: ‘Report of the “Workshop on Surface Radiation Budget for Climate Application”‘, WMO/TD, 109, 140.Google Scholar
  38. WCP-131, 1987: ‘Report of the “ISCCP” Workshop on Cloud Algorithms in the Polar Regions’, WMO/TD, 170, 42.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • E. Raschke
    • 1
  1. 1.Institute of Geophysics and MeteorologyUniversity of CologneKöln 41Fed. Rep. of Germany

Personalised recommendations