Skip to main content

Temperature and energy budgets

  • Chapter

Abstract

Temperature is of fundamental importance in affecting rates of metabolic activity in plant tissues. In this chapter, we will focus on methods for temperature measurement under field conditions and on the energy budget equation, which basically describes the influences of abiotic/biotic factors in affecting a deviation in plant tissue temperature from the surrounding ambient air temperature. As such the primary emphases of this chapter will be to describe (1) the principles behind the energy budget approach, (2) the leaf parameters which will influence leaf energy balance and thus need to be measured, (3) how leaf, air and soil temperatures are most commonly measured and (4) the precautions necessary to minimize errors in leaf, air and soil temperature measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birkebak, R.C. (1966) Heat transfer in biological systems. Int. Rev. Gen. Exp. Zool. 2, 269–344.

    Google Scholar 

  • Birkebak, R.C. and Birkebak, R. (1964) Solar radiation characteristics of tree leaves. Ecology, 45, 646–9.

    Article  Google Scholar 

  • Campbell, G.S. (1977) An Introduction to Environmental Biophysics, Springer-Verlag, New York, 159 pp.

    Google Scholar 

  • Collier, B.D., Cox, G.W., Johnson, A.W. and Miller, P.C. (1973) Dynamic Ecology, Prentice-Hall, Englewood Cliffs, 563 pp.

    Google Scholar 

  • Comstock, J.P. and Mahall, B.E. (1985) Drought and changes in leaf orientation for two California chaparral shrubs: Ceanothus megacarpus and Ceanothus crassifolius. Oecologia 65, 531–5.

    Article  Google Scholar 

  • Drake, B.G., Raschke, K. and Salisbury, F.B. (1970) Temperatures and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant Physiol., 46, 324–30.

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer, J.R. (1981) Leaf absorptances of Mohave and Sonoran Desert plants. Oecologia, 49, 366–70.

    Article  Google Scholar 

  • Ehleringer, J.R. (1985) Annuals and perennials of warm deserts. In Physiological Ecology of North American Plant Communities (eds B.F. Chabot and H.A. Mooney), Chapman and Hall, New York, pp. 162–80.

    Google Scholar 

  • Ehleringer, J.R. (1988) Changes in leaf characteristics in species along elevational gradients in the Wasatch Front, Utah. Am. J. Bot., 75, 680–89.

    Article  Google Scholar 

  • Ehleringer, J.R. and Björkman, O. (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia, 36, 151–62.

    Article  Google Scholar 

  • Ehleringer, J.R. and Forseth, I.N. (1980) Solar tracking by plants. Science, 210, 1094–8.

    Article  PubMed  CAS  Google Scholar 

  • Gates, D.M. (1962) Energy Exchange in the Biosphere, Harper and Row, New York. 151 pp.

    Google Scholar 

  • Gates, D.M. (1980) Biophysical Ecology, Springer-Verlag, New York.

    Google Scholar 

  • Gates, D.M., Keegan, H.J., Schleter, J.C. and Weidner, V.R. (1965) Spectral properties of plants. Appl. Opt., 4, 11–20.

    Article  Google Scholar 

  • Geiger, R. (1966) The Climate near the Ground, Harvard University Press, Cambridge. 611pp.

    Google Scholar 

  • Hays, R.L. (1975) The thermal conductivity of leaves. Planta 125, 281–7.

    Article  Google Scholar 

  • Holman, J.P. (1968) Heat Transfer. McGraw-Hill Book Co., New York, 401pp.

    Google Scholar 

  • Idso, S.B., Jackson, R.D., Ehrler, W.L. and Mitchell, S.T. (1969) A method for determination of infrared emittance of leaves. Ecology 50, 899–902.

    Article  CAS  Google Scholar 

  • Jones, H.G. (1983) Plants and Microclimate, Cambridge University Press, Cambridge. 323pp.

    Google Scholar 

  • Kortüm, G. (1969) Reflectance Spectroscopy, Springer-Verlag, New York.

    Google Scholar 

  • Lee, R. (1978) Forest Microclimatology, Columbia University Press, New York, 276pp.

    Google Scholar 

  • Lin, Z.F. and Ehleringer, J.R. (1982) Changes in spectral properties of leaves as related to chlorophyll and age in papaya. Photosynthetica, 16, 520–5.

    Google Scholar 

  • Lin, Z.F. and Ehleringer, J.R. (1983) Epidermal effects on spectral properties of leaves of four herbaceous species. Physiol. Plant., 59, 91–4.

    Article  Google Scholar 

  • List, R.J. (1968) Smithsonian Meteorological Tables, 6th edn, Smithsonian Misc. Coll. 114., Smithsonian Press, Washington, 527pp.

    Google Scholar 

  • Miller, P.C. (1971) Sampling to estimate mean leaf temperatures and transpiration rates in vegetation canopies. Ecology, 52, 885–9.

    Article  Google Scholar 

  • Miller, P.C. (1972) Bioclimate. leaf temperature, and primary production in red mangrove canopies in south Florida. Ecology, 53, 22–45.

    Article  Google Scholar 

  • Monteith, J.L. (1973) Principles of Environmental Physics, Edward Arnold, London, 241pp.

    Google Scholar 

  • Moss, R.A. and Loomis, W.E. (1952) Absorption spectra of leaves. I. The visible spectrum. Plant Physiol., 27, 370–91.

    Article  PubMed  CAS  Google Scholar 

  • Rabideau, G.S., French, C.S. and Holt, A.S. (1946) The absorption and reflection spectra of leaves, chloroplast suspensions, and chloroplast fragments as measured in an Ulbricht sphere. Am. J. Bot., 33, 769–77.

    Article  CAS  Google Scholar 

  • Rosenberg, N.J., Blad, B.L. and Verma, S.B. (1983) Microclimate the Biological Environment, 2nd edn, John Wiley and Sons, New York, 495pp.

    Google Scholar 

  • Taylor, A.H. (1920) The measurement of diffuse reflection factors and a new absolute reflectometer. J. Opt. Soc. Am., 4, 9–23.

    Article  Google Scholar 

  • Wiebe, H.H. and Drake, B.G. (1980) Leaf temperature mapping with thermosensitive liquid crystal models. BioScience 30, 32–3.

    Article  Google Scholar 

  • Weigand, C.L. and Swanson, W.A. (1973) Time constants for thermal equilibration of leaf, canopy, and soil surfaces with changes in insolation. Agron. J., 65, 722–4.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Chapman and Hall

About this chapter

Cite this chapter

Ehleringer, J.R. (1989). Temperature and energy budgets. In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (eds) Plant Physiological Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2221-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2221-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7496-4

  • Online ISBN: 978-94-009-2221-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics