Skip to main content
  • 1027 Accesses

Abstract

There are two basic types of instrument for measuring shear properties: capillary and slit rheometers in which the flow is generated by a pressure drop; and drag flow rheometers in which one bounding wall moves relative to a second, stationary wall. Pressure-driven rheometers are described in Chapter 8, and the present chapter deals with drag flow instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Dealy, Rheometers for Molten Plastics , Van Nostrand Reinhold, N.Y. (1982).

    Google Scholar 

  2. A. A. Collycr and D. W. Clegg, editors, Rheological Measurement , Elsevier Applied Science, London & New York, 1988.

    Google Scholar 

  3. M. A. Lockyer and K. Walters, Rheol. Acta 15: 179 (1976).

    Article  Google Scholar 

  4. H. M. Laun, J. Rheol. 30: 459 (1986).

    Article  ADS  Google Scholar 

  5. J. Meissner, J. Appl. Polym. Sci. 16: 2877 (1972).

    Article  Google Scholar 

  6. D. Chan and R. L. Powell, J. Rheol. 28: 449 (1984).

    Article  ADS  Google Scholar 

  7. K. H. Lee, L. G. Jones, K. Pandalai and R. S. Brodkey, Trans. Soc. Rheol. 14: 555 (1970).

    Article  Google Scholar 

  8. G. K. Batchelor, An Introduction to Fluid Mechanics , p. 191, Cambridge Univ. Press, Cambridge (1967).

    Google Scholar 

  9. Y. Mochimaru, J. Non-Newt. Fl. Mech. 12: 135 (1983).

    Article  MATH  Google Scholar 

  10. A. Narain and D. D. Joseph, Rheol. Acta 21: 228 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. W. Chow and G. G. Fuller, J. Non-Newt. Fl. Mech. 17: 233 (1983).

    Article  Google Scholar 

  12. I. F. MacDonald, B. C. Marsh and E. Ashare, Chem. Eng. Sci. 24: 1615 (1969).

    Article  Google Scholar 

  13. J. L. Schrag, Trans. Soc. Rheol. 21: 399 (1977).

    Article  Google Scholar 

  14. G. Heuser and E. Krause, Rheol. Acta 18: 553 (1979).

    Article  MATH  Google Scholar 

  15. J. M. H. Fortuin, Chem. Eng. Sci. 40: 111 (1985).

    Article  Google Scholar 

  16. P. T. Gavin and R. W. Whorlow, J. Appl. Polym. Sci. 19: 567 (1975).

    Article  Google Scholar 

  17. D. S. Pearson and W. E. Rochefort, J. Polym. Sci. Polym. Phys. 20: 83 (1982).

    ADS  Google Scholar 

  18. L. M. Quinzani and E. M. Vallés, J. Rheol. 30: S1 (1986).

    Article  Google Scholar 

  19. W. Gleissle, Colloid & Polym. Sci. 252: 848 (1974).

    Article  Google Scholar 

  20. W. Gleissle, Rheol. Acta 15: 305 (1976).

    Article  Google Scholar 

  21. F. Nazem and M. G. Hansen, J. Appl. Polym. Sci. 20: 1355 (1976).

    Article  Google Scholar 

  22. J. F. Hutton, Rheol. Acta 8: 54 (1969).

    Article  Google Scholar 

  23. R. I. Tanner and M. Keentok, J. Rheol. 27: 47 (1983).

    Article  ADS  Google Scholar 

  24. C. W. Macosko and D. J. Morse, Proc. VIIth Intern. Congr. Rheol. , p. 376 (1976).

    Google Scholar 

  25. A. S. Lodge, J. Non-Newt. Fl. Mech. 14: 67 (1984).

    Article  MATH  Google Scholar 

  26. I. Bruker, Rheol. Acta 25: 501 (1986).

    Article  Google Scholar 

  27. N. Adams and A. S. Lodge, Phil. Trans. A256: 149 (1964).

    ADS  Google Scholar 

  28. W. Gleissle, Proc. VIIth Intern. Congr. Rheol., Gothenberg, Sweden, p. 594, 1976.

    Google Scholar 

  29. R. L. Crawley and W. E. Graessley, Trans. Soc. Rheol. 21: 19 (1977).

    Article  Google Scholar 

  30. L. J. Zapas, G. B. McKenna and A. Brenna, J. Rheol. 33: 69 (1989).

    Article  ADS  Google Scholar 

  31. I. Bruker and A. S. Lodge, J. Rheol. 29: 557 (1985).

    Article  ADS  Google Scholar 

  32. J. Meissner, R. W. Garbella and J. Hostettler, J. Rheol. 33: 843 (1989).

    Article  Google Scholar 

  33. K. Walters and R. A. Kemp, Rheol. Acta 7: 1 (1968).

    Article  Google Scholar 

  34. M. M. Cross and A. Kaye, Polymer 28: 435 (1987).

    Article  Google Scholar 

  35. K. Geiger, Rheol. Acta 27: 209 (1988).

    Article  Google Scholar 

  36. E. Ganani and R. L. Powell, J. Rheol. 29: 931 (1985).

    Article  ADS  Google Scholar 

  37. P. R. Soskey and H. H. Winter, J. Rheol. 28: 625 (1984).

    Article  ADS  Google Scholar 

  38. W. C. MacSporran and R. P. Spiers, Rheol. Acta 21: 193 (1982).

    Article  Google Scholar 

  39. W. C. MacSporran and R. P. Spiers, Rheol. Acta 23: 90 (1984).

    Article  Google Scholar 

  40. R. L. Powell and W. H. Schwartz, J. Polym. Sci. Polym. Phys. 17: 969 (1979).

    ADS  Google Scholar 

  41. R. L. Powell and W. H. Schwartz, J. Rheol. 23: 323 (1979).

    Article  ADS  Google Scholar 

  42. B. Maxwell, Polym. Eng. Sci. 7: 145 (1967).

    Article  Google Scholar 

  43. R. J. J. Jongschaap, K. M. Knapper and J. S. Lopulissa, Polym. Eng. Sci. 18: 788 (1978).

    Article  Google Scholar 

  44. T. N. G. Abbott and K. Walters, J. Fl. Mech. 40: 205 (1970).

    Article  MATH  ADS  Google Scholar 

  45. P. Payvar and R. I. Tanner, Trans. Soc. Rheol. 17: 449 (1973).

    Article  Google Scholar 

  46. M. Gottlieb and C. W. Macosko, Rheol. Acta 21: 90 (1982).

    Article  Google Scholar 

  47. C. Goldstein and W. B. Schowalter, Trans. Soc. Rheol. 19: 1 (1975).

    Article  Google Scholar 

  48. L. H. Gross and B. Maxwell, Trans. Soc. Rheol. 16: 577 (1972).

    Article  Google Scholar 

  49. J. S. Dodge and I. M. Krieger, Rheol. Acta 8: 480 (1969).

    Article  Google Scholar 

  50. T. M. T. Yang and I. M. Krieger, J. Rheol. 22: 413 (1978).

    Article  ADS  Google Scholar 

  51. T. T. Tee and J. M. Dealy, Trans. Soc. Rheol. 19: 595 (1975).

    Article  Google Scholar 

  52. S. Onogi, T. Masuda and T. Matsumoto, Trans. Soc. Rheol. 14: 275 (1970).

    Article  Google Scholar 

  53. T. Matsumoto, Y. Segawa, Y. Waroshina and S. Onogi, Trans. Soc. Rheol. 17: 47 (1973).

    Article  Google Scholar 

  54. S. Onogi and T. Matsumoto, Polym. Eng. Rev. 1: 45 (1981).

    Google Scholar 

  55. J. M. Dealy and T. K. P. Vu, J. Non-Newt. Fl. Mech. 3:127 (1977/78).

    Article  Google Scholar 

  56. B. Maxwell, Plastics Engineering , Sept. 1987, p. 41.

    Google Scholar 

  57. D. J. Plazek, J. Polym. Sci. A-2 6: 621 (1968).

    Article  Google Scholar 

  58. G. Link and F. R. Schwarzl, Rheol. Acta 24: 211 (1985).

    Article  Google Scholar 

  59. T. E. R. Jones, J. M. Davies and A. Thomas, Rheol. Acta 26: 14 (1987).

    Article  Google Scholar 

  60. A. J. P. Frank, J. Rheol. 29: 833 (1985).

    Article  ADS  Google Scholar 

  61. R. F. Garritano, U.S. Patent 4,501, 155 (1985).

    Google Scholar 

  62. H. M. Laun and J. Meissner, Rheol. Acta. 19: 60 (1980).

    Article  Google Scholar 

  63. W. Philippoff, in Physical Acoustics , II-B, Ed. W. P. Mason, Academic Press, N.Y. (1965).

    Google Scholar 

  64. W. T. Read, J. Appl. Mech. 17: 349 (1950).

    MATH  Google Scholar 

  65. R. S. Rivlin and D. W. Saunders, I. R. I. Trans. 24: 296 (1949).

    Google Scholar 

  66. E. N. da C. Andrade, Proc. Roy. Soc. Lond. 85: 448 (1911).

    Article  MATH  ADS  Google Scholar 

  67. A. N. Gent, R. L. Henry and M. L. Roxbury, J. Appl. Mech. 41: 855 (1974).

    Article  ADS  Google Scholar 

  68. S. Toki and J. L. White, J. App!. Polym. Sci. 27: 3171 (1982).

    Article  Google Scholar 

  69. A. J. Giacomin, Ph. D. Thesis, Chem. Eng., McGill Univ., Montreal, 1987.

    Google Scholar 

  70. A. J. Giacomin and J. M. Dealy, “The effect of free boundaries in melt rheometers”, Paper G3, 58th Annual Mtg., Soc. Rheol., Tulsa, Oct. 1986.

    Google Scholar 

  71. K. Osaki, S. Kimura and M. Kurata, J. Rheol. 25: 549 (1981).

    Article  ADS  Google Scholar 

  72. T. Y. Liu, D. W. Mead, D. S. Soong and M. C. Williams, Rheol. Acta 22: 81 (1983).

    Article  Google Scholar 

  73. N. Sivashinsky, A. T. Tsai, T. J. Moon and D. S. Soong, J. Rheol. 28: 287 (1984).

    Article  ADS  Google Scholar 

  74. T. Y. Liu, D. S. Soong and M. C. Williams, J. Polym. Soc. Polym. Phys. 22: 1561 (1984).

    Article  ADS  Google Scholar 

  75. J. M. Dealy and S. S. Soong, J. Rheol. 28: 355 (1984).

    Article  ADS  Google Scholar 

  76. S. K. Kimura, K. Osaki and M. Kurata, J. Polym. Sci. Polym. Phys. 19: 151 (1981).

    ADS  Google Scholar 

  77. J. Meissner, Chemie 38: 35 (1984).

    Google Scholar 

  78. F. P. LaMantia, B. de Cindio, E. Sorta and D. Acierno, Rheol. Acta 18: 369 (1979).

    Article  Google Scholar 

  79. D. Acierno et al., Trans. Soc. Rheol. 21: 261 (1977).

    Article  Google Scholar 

  80. J. Meissner, B. Zülle and H. Hürlimann, Proc. Xth Intern. Congr. Rheol. 2: 121 (1988).

    Google Scholar 

  81. H. M. Laun, Rheol. Acta 21: 464 (1982).

    Article  Google Scholar 

  82. J. Meissner, Pure Appl. Chem. 56: 369 (1984).

    Article  Google Scholar 

  83. M. Fleissner, Angewandte Makrom. Chemie. 94: 197 (1981).

    Article  Google Scholar 

  84. F. Nazem and Y. Hill, Trans. Soc. Rheol. 18: 87 (1974).

    Article  Google Scholar 

  85. B. H. Shah and R. Darby, Polym. Eng. Sci. 16: 46 (1976).

    Article  Google Scholar 

  86. T. Murayama, J. Appl. Polym. Sci. 27: 80 (1982).

    Article  Google Scholar 

  87. A. Haghtalab, M. Eng. Thesis, Chem. Eng., McGill Univ., Montreal , 1985.

    Google Scholar 

  88. J. Janeschitz-Kriegl, Polymer Melt Rheology and Flow Birefringence , Springer Verlag, Berlin, N.Y. (1983).

    Google Scholar 

  89. J. M. Dealy, U.S. Patent No. 4,463, 928 (1984).

    Google Scholar 

  90. A. J. Giacomin and J. M. Dealy, SPE (ANTEC) Tech. Papers 32: 711 (1986).

    Google Scholar 

  91. J. M. Dealy, U.S. Patent No. 4,571, 989 (1986).

    Google Scholar 

  92. A. J. Giacomin, T. Samurkas and J. M. Dealy, Polym. Eng. Sci. 29: 499 (1989).

    Article  Google Scholar 

  93. F. C. Starr, U.S. Patent No. 4,466, 274 (1984).

    Google Scholar 

  94. A. W. Myers and J. A. Faucher, Trans. Soc. Rheol. 12: 183 (1968).

    Article  Google Scholar 

  95. B. Maxwell, in Order in the Amorphous State of Polymers , ed. by S. E. Keinath, R. L. Miller and J. K. Rieke, Plenum Publ. Corp., N.Y. (1986).

    Google Scholar 

  96. A. T. Tsai and D. S. Soong, J. Rheol. 29: 1 (1985).

    Article  ADS  Google Scholar 

  97. R. V. McCarthy, J. Rheol. 22: 623 (1978).

    Article  ADS  Google Scholar 

  98. B. Maxwell and K. S. Cook, J. Polym. Sci. Polyin. Symp. 72: 343 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dealy, J.M., Wissbrun, K.F. (1999). Rotational and Sliding Surface Rheometers. In: Melt Rheology and Its Role in Plastics Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2163-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2163-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5886-2

  • Online ISBN: 978-94-009-2163-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics