Skip to main content

A Fractal Study of Dielectric Breakdown in the Atmosphere

  • Chapter

Abstract

Analysis of photographs of lightning indicates that lightning has fractal geometry associated with a reproducible fractal dimension of about 1.34. Following this analysis a nonequilibrium model is presented which generates structures which are qualitatively similar to lightning observed in the atmosphere and which exhibit a fractal dimension of 1.37. The result of the model are also used to demonstrate that the observed lightning structures are most probable events.

Keywords

  • Fractal Dimension
  • Fractal Structure
  • Fractal Geometry
  • Discharge Pattern
  • Local Potential Field

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-009-2147-4_11
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-009-2147-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Hentschel, H. G. E., and I. Procaccia, 1983: The infinite number of generalized dimensions of fractals and strange attractors. Physica. 8D. 435–444.

    Google Scholar 

  • Lovejoy, S., D. Schertzer, and A. A. Tsonis, 1987: Functional Box Counting and Multiple Elliptical Dimensions in Rain. Science. 235. 1036–1038.

    CrossRef  Google Scholar 

  • Lovejoy, S., D. Schertzer, and P. Ladoy, 1986: Fractal characterization of inhomogeneous geophysical measuring networks. Nature. 319.43–44.

    CrossRef  Google Scholar 

  • Mandelbrot, B., 1983: The Fractal Geometry of Nature. Freeman and Company, New York, 461 pp.

    Google Scholar 

  • Meakin, P., 1986: A new model for biological pattern formation. J. Theor. Biol. 118.101–113.

    CrossRef  Google Scholar 

  • Morse, D. R., J. H. Lawton, M.M. Dodson, and M.H. Williamson, 1984: Fractal dimension of vegetation and the distribution of arthropod body lengths, Nature. 314.731–733.

    CrossRef  Google Scholar 

  • Niemeyer, L., L. Pietronero, and H. J. Wiesmann, 1984: Fractal dimension of dielectric breakdown. Phys. Rev. Lett., 52. 1033–1036.

    CrossRef  Google Scholar 

  • Nittmann, J., and E. H. Stanley, 1986: Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature. 312.663–668.

    CrossRef  Google Scholar 

  • Salanave, L. E., 1980: Lightning and its spectrum. University of Arizona Press, Tucson, Arizona. 136 pp.

    Google Scholar 

  • Witten, T. A., Jr., and L. M. Sander, 1981: Diffusion-Limited Aggregation, a kinetic critical phenomenon. Phys. Rev. Lett., 47, 1400–1403

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tsonis, A.A. (1991). A Fractal Study of Dielectric Breakdown in the Atmosphere. In: Schertzer, D., Lovejoy, S. (eds) Non-Linear Variability in Geophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2147-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2147-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7466-7

  • Online ISBN: 978-94-009-2147-4

  • eBook Packages: Springer Book Archive