Skip to main content

An Optimal Carleman-Type Inequality for the Dirac Operator

  • Chapter
Stochastic Processes and their Applications

Part of the book series: Mathematics and Its Applications (Soviet Series) ((MAIA,volume 61))

Abstract

We prove an inequality of the type

$$ \parallel {{e}^{{\tau \varphi }}}{\text{f}}\parallel {{{\text{ }}}_{{\text{L}}}}{{{\text{q}}}_{{{\text{(U)}}}}}{\text{ }} \leqq {\text{ c }}{{\left\| {{\text{ }}{{{\text{e}}}^{{\tau \varphi }}}\mathop{{\alpha D}}\limits^{{ \to \to }} {\text{f}}} \right\|}_{{{\text{ L}}}}}{{{\text{2}}}_{{{\text{(U)}}}}} $$

for τ → ∞, u ∈ C O (U), with an optimal q. In particular, this gives the unique continuation property for Dirac operators \( \mathop{{\alpha D}}\limits^{{ \to \to }} + V(x) \) when V ∈ L 7/2loc (IR 3). This result cannot be improved using isotropic LP−Lq Carleman inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.O. Amrein,A. Berthier,V. Georgescu:“LP-inequalities for the Laplacian and unique continuation”, Ann. Inst. Fourier, 31, (1981), 153–168.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Berthier,V. Georgescu: “Sur la propriété de prolongement unique pour l’opérateur de Dirac”, C.R.A.S. Paris, 291, (1980), and Preprint of Paris V I, (1980).

    Google Scholar 

  3. A. Berthier,V. Georgescu: “Sur le spectre ponctuel de l’opérateur de Dirac, C.R.A.S.,Paris, t. 297, (1983) and On the point spectrum of Dirac operators to appear in J.F.A., (1983).

    Google Scholar 

  4. L. Hörmander: “Linear partial differential operators”, Springer Verlag, (1963).

    Google Scholar 

  5. D. Jerison,C.E.Kenig: “Unique continuation and absence of positive eigenvalues for Schrödinger operators”, Ann.of Math. 121, 463–494 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Messiah: “Quantum Mechanics ” North-Holland.

    Google Scholar 

  7. C. Sogge: Oscillatory integrals and spherical harmonics, thesis, Princeton University, 1985.

    Google Scholar 

  8. M.E. Taylor:“Pseudo-differential operators”, Princeton Univ. Press Press, Princeton N.J. (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

de Monvel-Berthier, A.B. (1990). An Optimal Carleman-Type Inequality for the Dirac Operator. In: Albeverio, S., Streit, L., Blanchard, P. (eds) Stochastic Processes and their Applications. Mathematics and Its Applications (Soviet Series), vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2117-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2117-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7452-0

  • Online ISBN: 978-94-009-2117-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics