Skip to main content

Noncommutative Version of The Central Limit Theorem and of Cramér’s Theorem

  • Chapter
Stochastic Processes and their Applications

Part of the book series: Mathematics and Its Applications (Soviet Series) ((MAIA,volume 61))

  • 506 Accesses

Abstract

Usually, a random variable f; is considered as a measurable function ξ(·) on some probability space. But a function can also be regarded as a multiplication operator, and different random variables commute as multiplication operators. Mixed moments, m(ξ1…ξn),can be written as

$$m\left( {{\xi _1} \cdots {\xi _n}} \right) = \int {du 1 \cdot \xi \left( \omega \right) \ldots {\xi _n}\left( \omega \right) \cdot 1 \equiv \left\langle {{\varphi _0}, {\xi _1} \cdots {\xi _n} {\varphi _0}} \right\rangle } $$
(1.1)

where <,> denotes the scalar product in L2(μ) , \({\varphi _0}\left( \omega \right) \equiv 1\) (ω) =1, and the ξi’s are regarded as multiplication operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.C. Hegerfeldt, Noncommutative Analogs of Probabilistic Notions and Results. Functionae AnafybAb 64 (1985), 436–456

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Baumann and G.C. Hegerfeldt, A noncommutative Marcinkiewicz theorem. Pub.e. Rea. Inat. math. Sei. (Kyoto) 21 (1985), 191–204

    Article  MathSciNet  MATH  Google Scholar 

  3. H.J. Borchers, Algebraic aspects of Wightman field theory, in “Statistical Mechanics and Field Theory, Haifa Lectures, 1971” (R.N. Sen and C. Weil, Eds.), Halsted, New York, 1972

    Google Scholar 

  4. R. Jost, “The General Theory of Quantized Fields,” Amer. Math. Soc., Providence, R.I., 1965

    Google Scholar 

  5. D.W. Robinson, A Theorem Concerning the Positive Metric. Commun. Math. Phya. 1 (1965), 89–94

    Article  MATH  Google Scholar 

  6. K. Baumann, When is a Field Theory a Generalized Free Field?Commun. Math. Phya. 43 (1975), 221–223

    MathSciNet  Google Scholar 

  7. H.J. Borchers, unpublished, quoted in ref. 9, footnote 14

    Google Scholar 

  8. J. Yngvason, Invariant States on Borchers’s Tensor Algebra. Ann. Inst. Henri Poincaré 45 (1986), 117–145 and references therein.

    Google Scholar 

  9. G.C. Hegerfeldt, Prime field decomposition and infinitely divisible states on Borchers’ tensor algebra, Comm. Math. Ph0. 45 (1975), 137–152

    MathSciNet  MATH  Google Scholar 

  10. H. Cramér, Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Zeitach/L. 41 (1936), 405–414

    Article  Google Scholar 

  11. G.C. Hegerfeldt, Factors of the Fock Functional. 3.Math.Phya. 26 (1985), 62–64

    Google Scholar 

  12. G.G. Emch and G.C. Hegerfeldt, New Classical Properties of Quantum Coherent States. J. Math. Phys. 27 (1986), 2731–2737

    Article  MathSciNet  Google Scholar 

  13. B.V. Gnedenko and A.N. Kolmogorov, “Limit Distributions for Sums of Independent Random Variables,” revised ed., Addison-Wesley, Reading, Mass., 1968

    Google Scholar 

  14. G.C.Hegerfeldt, Inequalities of Schwarz and Hölder type for Random Operators.J.Math. Phya. 26 (1985), 1576–1577

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Kubo, Generalized Cumulant Expansion Method. J. Phya.Soc. Japan 17 (1962), 1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  16. W. von Waldenfels, An Approach to the Theory of Pressure Broadening of Spectral Lines, in Pnobab.LtLty and In.onmatLon Theory II. Lecture Notes in Mathematics 296, M. Behara, K. Krickeberg and J. Wolfowitz eds. Springer 1973, p. 19–69

    Google Scholar 

  17. N.G. van Kampen, A. Cumulant Expansion for Stochastic Differential Equations. II. Phya., ca 74 (1974), 239–247

    Google Scholar 

  18. R.H. Terwiel, Projection Operator Technique Applied to Stochastic Linear Differential Equations. Phy3..ca 74 (1974), 248–265

    MathSciNet  Google Scholar 

  19. G.C. Hegerfeldt and R. Reibold, Stochastic Aspects in the Theory of Spectral-Line Broadening. II. Noncommutative Cluster Expansion. J. S.ta.t.L.t.Lcat Phyece 32 (1983), 337–360

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hegerfeldt, G.C. (1990). Noncommutative Version of The Central Limit Theorem and of Cramér’s Theorem. In: Albeverio, S., Streit, L., Blanchard, P. (eds) Stochastic Processes and their Applications. Mathematics and Its Applications (Soviet Series), vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2117-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2117-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7452-0

  • Online ISBN: 978-94-009-2117-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics