Macroscopic Potentials of Dissipative Dynamical Systems

  • R. Graham
  • T. Tél
Chapter
Part of the Mathematics and Its Applications (Soviet Series) book series (MAIA, volume 61)

Abstract

The notion of a coarse grained thermodynamic potential is extended to non-equilibrium systems with stable, generally time dependent, steady states. A review is presented of recent results for this problem. The non-equilibrium potential is defined by an extremum principle incorporating the influence of weak noise, it satisfies a Hamilton Jacobi equation, which is generally non-integrable, and the potential is found, in general, to be continuous and single valued but only piecewise differentiable. Examples are studied exhibiting monostable and multistable behavior, including limit cycles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Green, J. Chem. Phys. 20, 1281 (1952)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Graham, H. Haken, Z. Physik 243,289 (1971); 245, 141 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.Graham, in Coherence and Quantum Optics, ed. L. Mandel, E. Wolf, ( Plenum, New York, 1973 )Google Scholar
  4. 4.
    H. Grabert, M.S. Green, Phys. Rev. A19, 1747 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Grabert, R. Graham, M.S. Green, Phys. Rev. A21,2136 (1980)Google Scholar
  6. 6.
    R.Graham, in Stochastic Nonlinear Systems, ed. L. Arnold, R. Lefever ( Springer, New York, 1981 )Google Scholar
  7. 7.
    L. Onsager, Phys. Rev. 37,405 (1931); 38, 2265 (1931)CrossRefMATHGoogle Scholar
  8. 8.
    L.D. Landau, E.M. Lifschitz, Fluid Mechanics, ( Pergamon, London, 1959 )Google Scholar
  9. 9.
    S. Ma, Modern Theory of Critical Phenomena ( Benjamin, Reading, 1976 )Google Scholar
  10. 10.
    R. Graham, Phys. Rev. A10,1762 (1974)Google Scholar
  11. 11.
    R. Graham, A. Schenzle, Z. Physik B52,61 (1983)Google Scholar
  12. 12.
    R. Graham, T. Tél, Phys. Rev. Lett. 52, 9 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Haken, Phys. Rev. Lett. 13, 326 (1964)CrossRefGoogle Scholar
  14. 14.
    H. Risken, Z. Physik, 186, 85 (1965)CrossRefGoogle Scholar
  15. 15.
    R. Graham, Springer Tracts Mod. Phys. 66, 1 (1973)Google Scholar
  16. 16.
    A.Schenzle, H. Brand, Opt. Comm. 27, 85 (1978)CrossRefGoogle Scholar
  17. 17.
    R. Graham, A. Schenzle, Phys. Rev A23,1302 (1981)Google Scholar
  18. 18.
    A. Newel, J. Whitehead, J. Fluid Mech. 38, 279 (1969)CrossRefGoogle Scholar
  19. 19.
    H. Risken, The Fokker-Planck Equation ( Springer, New York, 1983 )Google Scholar
  20. 20.
    R. Graham, in Stochastic Processes in Nonequilibrium Systems, ed. L. Garrido,P. Seglar, P.J. Shepherd ( Springer, New York, 1978 )Google Scholar
  21. 21.
    R. Graham, R. Roekaerts, T. Tél, Phys. Rev. A31,3364 (1985)Google Scholar
  22. 22.
    M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems ( Springer, New York, 1984 )MATHGoogle Scholar
  23. 23.
    R.H.G. Helleman, in: Fundamental Problems in Statistical Mechanics, Vol. 5, ed. E.G.D. Cohen ( North Holland, Amsterdam, 1980 )Google Scholar
  24. 24.
    A.J. Lichtenberg, M.A. Liebermann: Regular and Stochastic Motion ( Springer, New York, 1983 )MATHGoogle Scholar
  25. 25.
    J. Hietarinta, J. Math. Phys. 26, 1970 (1985)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    D.Roekaerts, F. Schwartz, to be publishedGoogle Scholar
  27. 27.
    R.Graham, T.Tél, J. Stat. Phys. 35, 729 (1984)CrossRefMATHGoogle Scholar
  28. 28.
    R. Graham, T. Tél, Phys. Rev. A31, 1109 (1985)MathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Kubo, K. Matsuo, K. Kitahara, J. Stat. Phys. 9, 51 (1973)CrossRefGoogle Scholar
  30. 30.
    R. Graham, Z. Physik B26,281 (1977)Google Scholar
  31. 31.
    E. Ben-Jacob, D.J. Bergmann, B.J. Matkowsky, Z. Schuss, Phys. Rev. A26, 2805 (1982)CrossRefGoogle Scholar
  32. 32.
    R. Graham, T. Tél, Phys. Rev. A33, 1322 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • R. Graham
    • 1
  • T. Tél
    • 2
  1. 1.Fachbereich PhysikUniversität-GHS EssenF.R. Germany
  2. 2.Institute of Theoretical PhysicsEötvös UniversityBudapestHungary

Personalised recommendations