Skip to main content

Multiobjective Mathematical Programming with Inexact Data

  • Chapter

Part of the Theory and Decision Library book series (TDLD,volume 6)

Abstract

The our purpose is to present two approaches for the inexact multiobjective programming with inexactness in the criteria, which correspond to the conservative and nonconservative ways for mathematical programming with set coefficients.

Keywords

  • Programming Problem
  • Linear Programming Problem
  • Efficient Point
  • Multiobjective Programming
  • Generalize Linear Programming

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-009-2111-5_20
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-94-009-2111-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   409.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakan, G. M. and Ahmetzanova, Z.Zh. (1986) ‘A problem of convex programming with multivalued parameters’, (russian), Kibernet. i VychisZ.Tehn. 71, 104–108.

    Google Scholar 

  2. Benson, H. P. and Morin, T.L. (1977) ‘The vector maximization problem: proper efficiency and stability’, SIAM J. Appl. Math., 32, 1, 64–72.

    CrossRef  Google Scholar 

  3. Bird, J. F. and Chattergee, S. (1985) ‘Objective function bounds for the inexact linear programming problem with generalized cost coefficients’, Computing Oper. Res., 13 (5), 483–491.

    CrossRef  Google Scholar 

  4. Bitran, G.R. (1980) ‘Linear MOP with interval coefficients’, Manag. Sci., 26, (7), 694–706

    CrossRef  Google Scholar 

  5. Chadha, S. S. (1973) ‘Duality theorems for a generalized linear and linear fractional program’, Cahiers C.E.R.O., 15 (2), 167–173.

    Google Scholar 

  6. Chadha, S. S. and Kaul, R. N. (1972) ‘A linear fractional program with variable coefficients’, J.Math.Sci., 7, 15–20.

    Google Scholar 

  7. Charnes, A. and Cooper W.W. (1961) Management Models and Industrial Applications of Linear Programming, John Wiley, New-York.

    Google Scholar 

  8. Charnes, A. and Cooper, W.W. (1977) ‘Goal programming and multiple objective optimizations’, European J. Oper. Res., 1, 39–45.

    CrossRef  Google Scholar 

  9. Dantzig, G.B. (1963) Linear Programming and Extensions, Princeton Univ. Press, Princeton, New-Jersey.

    Google Scholar 

  10. Duca, D. (1975) ‘O teoremâ de dualitate in programarea inexactâ’, Stud. Cerc. Mat., 27 (4), 443–448.

    Google Scholar 

  11. Dumitru, V. and Luban, F. (1986) ‘On some optimization problem under uncertainty’, Fuzzy Sets and Systems, 18, 257–272.

    CrossRef  Google Scholar 

  12. Falk, E.J. (1976) ‘Exact solutions of inexact linear programs’, Oper.Res., 24 (4), 783–787.

    CrossRef  Google Scholar 

  13. Gould, F.J. (1972) ‘Proximate linear programming: A variable extreme point method’, Math. Programming, 3, 326–338.

    CrossRef  Google Scholar 

  14. Itbaev, M.N. (1985) ‘On the duality problem of inexact and generalized linear programming’, (russian), Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.–Mat., 35–38.

    Google Scholar 

  15. Kaul, R.N. and Bhatia, D. (1974) ‘Generalized linear fractional programming’, Econom.-Mat.Obzor, 10 (3), 322–330.

    Google Scholar 

  16. Kaul, R.N., Kaur, S. and Lyall V. (1986) ‘Duality in inexact fractional programming with set-inclusive constraints’, J. Optim. Theor. Appl., 50 (2), 279–288.

    CrossRef  Google Scholar 

  17. Kaur, S. (1984) ‘Inexact fractional programming with set-inclusive constraints,’ Cahiers C.E.R.O., 26 (1–2), 33–41.

    Google Scholar 

  18. Kaur, S. and Bhatia, D. (1983) ‘Duality theory for generalized fractional programming’, Indian J. Pure Appt. Math., 14 (2), 257–264.

    Google Scholar 

  19. Kornbluth, J.S.H. and Steuer, R.E. (1981) ‘Goal programming with linear-fractional criteria’, European J. Oper.Res., 8 (1), 58–65.

    CrossRef  Google Scholar 

  20. Kornbluth, J.S.H. (1983) ‘Max-min programming with linear fractional functions. Algorithms and examples’, in P.Hansen (ed., Essays and Surveys on Multiple Criteria Decision Making, Springer, Berlin, pp. 204–213.

    Google Scholar 

  21. Luhandjula, M.K. (1984) ‘Fuzzy approaches for multiple objective linear fractional optimization’, Fuzzy Sets and Systems, 13, 11–23.

    CrossRef  Google Scholar 

  22. Lyall, V. (1988) ‘Duality theory in inexact multiobjective programming’, J. Inf. Optim. Sci., (India), 9 (2), 199–206.

    Google Scholar 

  23. Negoitd., G.V., Flondor, P. and Sularia, M. (1977) ‘On fuzzy environment in optimization problems’, Econorn. Comput.Econorn.Cybernet.Stud. Res., 1, 13–24.

    Google Scholar 

  24. Patkar, V.N., Saxena, P.C. and Parkash, O. (1979) ‘Linear piecewise linear programs with variable coefficients’, Pure Appt. Math. Sci. (India), 10 (1–2), 51–56.

    Google Scholar 

  25. Peteanu, V. and Tigan, St. (1985) ‘The multiobjective linear-fractional programming and interval goal programming’, Itinerant Seminar on Functional Equations, Approximation and Convexity, Iasi (Romania), 40–45.

    Google Scholar 

  26. Pomerol, J. Ch. (1979) ‘Constraint qualifications for inexact linear programs’, Oper. Res., 27 (4), 843–847.

    CrossRef  Google Scholar 

  27. Rohn, J. (1980) ‘Duality in interval linear programming’, in Nickel K.L.E. (ed.), Interval Mathematics, Academic Press, pp. 521–529.

    Google Scholar 

  28. Schaible, S. (1974) ‘Nonlinear fractional programming,’ Operations Res. Verfahren, 19, 103–115.

    Google Scholar 

  29. Schaible, S. (1985) ‘Fractional programming with several ratios’, Methods of Operations Research, 49, 77–83.

    Google Scholar 

  30. Singh, C. (1982) ‘Convex programming with set-inclusive constraints and its applications to generalized linear and fractional programming’, J. Optim. Theory Appl., 38 (1), 33–42.

    CrossRef  Google Scholar 

  31. Soyster, A.L. (1973) ‘Convex programming with set-inclusive constraints and applications to inexact linear programming’, Oper. Res., 21 (5), 1154–1157.

    CrossRef  Google Scholar 

  32. Soyster, A.L. (1974) ‘A duality theory for convex programming with set inclusive constraints’, Oper. Res. 22 (4), 892–898.

    CrossRef  Google Scholar 

  33. Soyster, A.L. (1979) ‘Inexact linear programming with generalized resource sets’, European J. Oper. Res., 3 (4), 316–321.

    CrossRef  Google Scholar 

  34. Soyster, A.L., Lev, B. and Di Toof (1977) ‘Conservative linear programming with mixed multiple objectives,’ Omega, 5 (2), 193–205.

    CrossRef  Google Scholar 

  35. Staneu-Minasian, I.M. (1980) ‘A survey of methods used for solving the linear fractional programming with several objective functions’, Methods of Oper. Res. 40, 159–162.

    Google Scholar 

  36. Stancu-Minasian, I.M. (1984) Stochastic Programming with Multiple Objective Functions, Editura Academiei, Bucuresti and D. Reidel Publishing Company, Dordrecht, Boston, Lancester.

    Google Scholar 

  37. Stancu-Minasian, I.M. and Tigan, St. (1987) ‘Inexact mathematical programming’, Cluj-Napoca Univ., Seminar on Optimization Theory, Report no. 8, 99–116.

    Google Scholar 

  38. Stancu-Minasian, I.M. and Tigan, St. (1988) ‘Generalized pseudofractional max-min problems’, Itinerant seminar on functional equations approx., convexity, Cluj-Napoca Univ., 295–302.

    Google Scholar 

  39. Stancu-Minasian, I.M. and Tigan, St. (1988) ‘A stochastic approach to some linear fractional goal programming problems’, Kybernetika (Praha), 24 (2), 139–149.

    Google Scholar 

  40. Thuente, D. (1980) ‘Duality theory for generalized programs with computational methods’, Oper. Res., 28 (4), 1005–1011.

    CrossRef  Google Scholar 

  41. Tigan,St. (1975) ‘Sur une méthode pour la résolution d’un probleme d’optimisation fractionnaire par segments’, Analyse Numér. Théor. Approx., 4 (1), 87–97.

    Google Scholar 

  42. Tigan, St. (1976) ‘Sur un problème de programmation mathematique nonlineaire avec constraintes de type inclusion’, Analyse Numér. Théor. Approx., 5 (2), 219–224.

    Google Scholar 

  43. Tigan, St., (1976) ‘Observaţii asupra programării matematice eu restric ii de tip incluziune cu aplicaţie la programarea matematică Cu date inexacte’, Al II-lea Simpozion de informatică şi Conducere, Cluj-Napoca, pp. 182–186.

    Google Scholar 

  44. Tigan,St. (1985) ‘Goal programming with inexact data’, Cluj-Napoca University, Report no. 5, 95–106.

    Google Scholar 

  45. Tigan,St. (1988)‘On some procedures for solving fractional max-min problems’ Analyse Numér. Théor. Approx., 17 (1), 73–91.

    Google Scholar 

  46. Tigan, St. and Stancu-Minasian, I.M. (1989) ‘Fractional goal programming with inexact data’, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca Univ., pp. 311–318.

    Google Scholar 

  47. Wadhwa, V. (1972) ‘Linear fractional programs with variable coefficients’, Cahiers C.E.R.O., 14 (4), 223–232.

    Google Scholar 

  48. Zimmermann, H.J. (1978) ‘Fuzzy programming with several objective functions’, Fuzzy Sets and Systems 1, 45–55.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stancu-Minasian, I.M., Tigan, S. (1990). Multiobjective Mathematical Programming with Inexact Data. In: Slowinski, R., Teghem, J. (eds) Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty. Theory and Decision Library, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2111-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2111-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7449-0

  • Online ISBN: 978-94-009-2111-5

  • eBook Packages: Springer Book Archive