Skip to main content

Abstract

In most transformation systems today, in vitro regeneration of plants is an essential step and very often the main limiting factor for yield and success. Circumvention of in vitro regeneration would therefore be highly advantageous. The simplest way to do this would be to transfer DNA into the gametes and, after gamete fusion, to exploit seed embryogenesis for plant formation. If feasable, such an approach would be technically simpler and faster than methods based on in vitro regeneration. It should also be universal in its application. In addition, one would avoid the problem of somaclonal variation resulting from in vitro regeneration. Somaclonal variation in transgenic commercial lines of crop plants can spoil the advantage obtained by transferring a transgene. The problem of chimaera that is intrinsic to in vitro regeneration, would also be avoided. Gametes in the strict sense are not easily accessible in plants although progress has been achieved in isolating both sperm and egg cells (1). Both, male as well as female gametes, can be used for gene transfer. The main advantage of the egg cell might be the efficient formation of a whole plant either in situ or after isolation and in vitro culture. The latter remains to be shown, however. The male gamete in higher plants is not a free, mobile cell as in lower plants or in animals, but is part of a larger structure, the pollen. And only the pollen as such is able to perform fertilization in situ, while the isolated sperm cell would have to be fused in vitro with the egg cell. Attempts to use male gametes for gene transfer have therefore concentrated on the transfer through pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sexual Reproduction in Higher Plants (Cresti M, Gori P, Pacini E, eds) Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Pandey KK (1975) Nature 256:310–313

    Article  PubMed  CAS  Google Scholar 

  3. Pandey KK (1980) Heredity 45:15–29

    Article  Google Scholar 

  4. Hess D (1969) Z Pflanzenphysiol 60:348–358

    CAS  Google Scholar 

  5. Hess D (1980) Z. Pflanzenphysiol 98:321–337

    CAS  Google Scholar 

  6. Hess D (1987) Int Rev Cytol 107:169–190

    Google Scholar 

  7. De Wet JMJ, Bergquist RR, Harlan JR, Brink DE, Cohen CE, Newell CA, de Wet AE (1985) in Experimental manipulation of ovule tissue (Chapman GP, Mantell SH, Daniels W, eds), pp 197–209, Longman, London

    Google Scholar 

  8. Ohta Y (1986) Proc Natl Acad Sci USA 83:715–719

    Article  PubMed  CAS  Google Scholar 

  9. Klein TM, Wolf ED, Wu R, Sanford JC (1987) Nature 327:70–73

    Article  CAS  Google Scholar 

  10. Sanford JC, Skubik KA (1986) in Biotechnology and ecology of pollen (Mulcahy DL, Bergamini, Mulcahy G, Ottaviano E, eds), pp 71–76, Springer, New York Berlin Heidelberg Tokyo

    Google Scholar 

  11. Booy G, Krens FA, Huizing HJ (1989) J Plant Physiol 135:319–324

    CAS  Google Scholar 

  12. DNA Plant Technology Corporation and Du Pont European Patent Application Nr. 88100267.9 from 11.01.1988)

    Google Scholar 

  13. Picard E (1988) Genome 30 (Suppl), abstract Nr. 25.8.2

    Google Scholar 

  14. Zhou GY, Weng J, Gong ZZ, Zhen YS, Yang WX, Shen WF, Wang ZF, Tao QZ, Huang JG, Qian SY, Lin GL, Ying MC, Xue DY, Hong AH, Xu YJ, Chen SB, Duan XL (1988) Scientia Agricultura Sinica 21:1–6

    CAS  Google Scholar 

  15. Luo ZX, Wu R (1989) Plant Molec Biol Rep 7:69–77

    Article  Google Scholar 

  16. Negrutiu I, Heberle-Bors E, Potrykus I (1985) in Biotechnology and ecology of pollen (Mulcahy DL, Bergamini, Mulcahy G, Ottaviano E, eds), pp 65–70, Springer, New York Berlin Heidelberg Tokyo

    Google Scholar 

  17. AGRACETUS European Patent Application Nr. 87310612.4 from 02.12.1987

    Google Scholar 

  18. Pena de la A, Lörz H, Schell J (1987) Nature 325:274–276

    Article  Google Scholar 

  19. Twell D, Klein TM, Fromm ME, McCormick S (1989) Plant Physiol 91:1270–1274

    Article  PubMed  CAS  Google Scholar 

  20. Heslop-Harrison J (1979) Am J Bot 66:737–743

    Article  Google Scholar 

  21. Vithanage HIMV, Heslop-Harrison J (1979) Ann Bot 43:113–114

    Google Scholar 

  22. Matousek J, Tupy J (1984) Biol Plant (Praha) 26:62–73

    CAS  Google Scholar 

  23. Matousek J, Tupy J (1985) J Plant Physiol 119:169–178

    CAS  Google Scholar 

  24. Herrero M, Dickinson HG (1979) J Cell Sci 36:1–18

    PubMed  CAS  Google Scholar 

  25. Sanders LC, Lord EM (1989) Science 243:1606

    Article  PubMed  CAS  Google Scholar 

  26. Jackson JF (1988) in Sexual Reproduction in Higher Plants (Cresti M, Gori P, Pacini E, eds), pp 81–86, Springer, New York Berlin Heidelberg Tokyo

    Google Scholar 

  27. Engell K (1988) in Sexual Reproduction in Higher Plants (Cresti M, Gori P, Pacini E, eds), pp 383–388, Springer, New York Berlin Heidelberg Tokyo

    Google Scholar 

  28. Bennito Moreno RM, Macke F, Alwen A, Heberle-Bors E (1988a) Planta 176:145–148

    Article  Google Scholar 

  29. Alwen A, Vicente O, Heberle-Bors E (1989) in “Molecular communication in higher plants”, pp 75, Abstracts of EMBO-EMBL Symposium 1989 on Molecular Communication in Higher Plants

    Google Scholar 

  30. Neuhaus G, Spangenberg G, Mittelsten Scheid O, Schweiger H-G (1987) Theor Appl Genet 75:30–36

    Article  Google Scholar 

  31. Potrykus I, Datta SK, Neuhaus G, Spangenberg G (1988) in Abstracts of Second International Congress on Plant Molecular Biology, Nr. 57

    Google Scholar 

  32. Pechan PM (1989) Plant Cell Reports 8:387–390

    Article  Google Scholar 

  33. Engvild KV (1985) Theor Appl Genet 69:457–461

    Article  Google Scholar 

  34. Cornish MA, Werner CP (1985) Heredity 55:321–326

    Article  Google Scholar 

  35. Sanford JC, Skubik KA, Reisch BI (1985) Theor Appl Genet 69:571–574

    Article  CAS  Google Scholar 

  36. Sanford JC (1988) in Forest and crop biotechnology (Valentine HA, ed), pp 163–173, Springer, New York Berlin Heidelberg Tokyo

    Google Scholar 

  37. Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C (1989) Cell 57:717–723

    Article  PubMed  CAS  Google Scholar 

  38. Brinster RL, Sandgren EP, Behringer RR, Palmiter RD (1989) Cell 59:239–241

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Heberle-Bors, E., Moreno, R.M.B., Alwen, A., Stöger, E., Vicente, O. (1990). Transformation of Pollen. In: Nijkamp, H.J.J., Van Der Plas, L.H.W., Van Aartrijk, J. (eds) Progress in Plant Cellular and Molecular Biology. Current Plant Science and Biotechnology in Agriculture, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2103-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2103-0_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7445-2

  • Online ISBN: 978-94-009-2103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics