Early Visual-Vestibular Interactions and Postural Development

  • François Jouen
Part of the NATO ASI Series book series (ASID, volume 56)


For the last few years many experimental data, essentially originating from neurophysiological studies, have accumulated to show that the interactions of inputs from different sensory systems occur in the neurons of the central vestibular system. The focus of this chapter will be to investigate the vestibular system as a model of sensory interactions and relate it to postural motor outputs which can be recorded during early postural development. After a brief review of physiological aspects of the vestibular system, we shall focus attention on the pre-and postnatal development of the labyrinth in animals and humans. Then neurophysiological data and the psychophysics of visual vestibular interactions will be presented in order to demonstrate that such interactions can be observed in neonates at an early age.


Semicircular Canal Squirrel Monkey Vestibular Nucleus Vestibular System Vestibular Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, G. J. (1986). Perception of self-motion: Psychological and computational approaches, Psychological Bulletin, 99(1), 52–65.PubMedCrossRefGoogle Scholar
  2. Anniko, M. (1983). Embryonic development of vestibular Sense Organs and their Innervation. In: R. Romand (Ed.). Development of Auditory and Vestibular Systems, New-York: Academic Press, 375–423.Google Scholar
  3. Banks, M. S. & Salapatek, P. (1984). Infant visual perception, in: Handbook of Child Psychology. Vol. II. In: P.H. Mussen, (Ed.). Infancy and Developmental Psychobiology, New York: John Wiley & Sons, 435–571.Google Scholar
  4. Bast, T. H. & Anson, B. J. (1949). Temporal Bone and the Ear, Illinois: Thomas Springfield.Google Scholar
  5. Bergström, B. (1973). Morphology of the vestibular nerve. I. Anatomical studies of the vestibular nerve in man, Acta of Otolaryngology, 76, 162–172.CrossRefGoogle Scholar
  6. Bertenthal, B. & Bay, D. (1988). Visual Vestibular integration in early development. In: C. Butler & K. Jaffe (Eds.). Childhood Powered Mobility: Developmental, Technical and Clinical Perspectives, Inpress.Google Scholar
  7. Berthoz, A. & Droulez, J. (1982). Linear self-motion perception. In: A.H. Wertheim, W.A. Wagenaar & H.W. Leibowitz (Eds.).Tutorials in Motion Perception, London: Plenum Publishing Corporation, 157–199.Google Scholar
  8. Berthoz, A., Pavard, B. & Young, L. R. (1975). Perception of linear horizontal self motion induced by peripheral vision (linear vection), Experimental Brain Research, 23, 471–489.Google Scholar
  9. Bloch, H., Mellier, D. & Fuenmayor, G. (1984). Organization of visual pursuit in pre-term infants, Infant Behavior and Development, Special ICIS Issue, 7, 38–38.CrossRefGoogle Scholar
  10. Bonnet, C. (1987). La perception visuelle du mouvement, Le Courrier du CNRS, 69–70, 19–22.Google Scholar
  11. Brodal, P. (1978). The cortico pontine projections in the Rhesus monkey. Origin and principles of organization, Brain, 101, 251–283.PubMedCrossRefGoogle Scholar
  12. Buettner, U. W., Büttner, U. & Henn, V.(1978). Transfer characteristics of neurons in vestibular nuclei of the alert monkey, Journal of Neurophysiology, 41, 1614–1628.PubMedGoogle Scholar
  13. Butterworth, G. & Pope, M. (1983). Origine et fonction de la proprioception visuelle chez l’enfant. In: S. Schonen de (Ed.).Le Dèveloppement dans la Premiére Annèe, Paris: Presses Universitaires de France, 107–128.Google Scholar
  14. Carpenter, M. B., Stein, B. M. & Peter, P. (1972). Primary vestibulo cerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia, American Journal of Anatomy, 135, 221–250.PubMedCrossRefGoogle Scholar
  15. Cohen, B. (1972). The vestibulo-ocular reflex arc. In: H.H. Kornhuber (Ed.). Handbook of Sensory Physiology. Vol VI. Vestibular System. Part II. Psychophysics, Applied Aspects and General Interpretation, Berlin, New York: Springer Verlag, 477–540.Google Scholar
  16. Cohen, L. A. (1961). Role of eye and neck proprioceptive mechanisms in body orientation and motor coordination, Journal of Neurophysiology, 24, 1–11.PubMedGoogle Scholar
  17. Curthoys, I. S. (1979). The development of function of horizontal semi circular canal primary neurons in the rat, Brain Research, 167, 41–52.PubMedCrossRefGoogle Scholar
  18. Curthoys, I. S. (1983). The developement of function of primary vestibular neurons. In: R. Romand (Ed.). Development of Auditory and Vestibular Systems, New York: Academic Press, 425–457.Google Scholar
  19. Dayal, V. S., Farkashidy, J. & Kokshanian, A. (1973). Embryology of the ear, Canadian Journal of Otolaryngology, 2, 136–142.Google Scholar
  20. Deschesne, C. and Sans, A. (1985). Development of vestibular receptor surfaces in human fetuses, American Journal of Otolaryngology, 6, 378–387.CrossRefGoogle Scholar
  21. Dichgans, J. & Brandt, T. (1978). Visual Vestibular interactions: Effects on self motion perception. In: R. Held, W. Leibowitz & H.L. Teuber (Eds.). Handbook of Sensory Physiology. Vol. VIII Perception, Berlin: Springer Verlag, 755–804.Google Scholar
  22. Duensing, F. & Schaefer, K. P. (1958). Die Activitat einselner Neurone im Bereich der Vestibulariskerne bei Horinzontalbeschleunigung unter besonderer Berücksichtigung des vestibulären Nystagmus, Archiv für Psychiatrie und Nervenkreneinten, 198, 225–252.CrossRefGoogle Scholar
  23. Elliot, G. B, & Elliot, K. A. (1964). Some pathological, radiological and clinical implications of the precocious development of the human ear, Laryngoscope, 74,1160–1171.Google Scholar
  24. Eviatar, L. and Eviatar, A. (1978) Neurovestibular examination of infants and children, Advances in Otorhinolaryngology, 23, 169–191.Google Scholar
  25. Fernandez, C. & Goldberg, J. M. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Responses to sinusoidal stimulations and dynamics of peripheral vestibular system, Journal of Neurophysiology, 34, 671–675.Google Scholar
  26. Fernandez, C. & Goldberg, J. M. (1976). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. Responses to static tilts and long-duration centrifugal forces, Journal of Neurophysiology, 39, 970–984.PubMedGoogle Scholar
  27. Fernandez, C. & Goldberg, J. M. (1976). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. Directional selectivity and force-response relations, Journal of Neurophysiology, 39, 985–995.PubMedGoogle Scholar
  28. Fernandez, C. & Goldberg, J. M. (1976). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III Response dynamics, Journal of Neurophysiology, 39, 996–1008.PubMedGoogle Scholar
  29. Fredrickson, J. M., Schwarz, D. W. F. & Kornhuber, H. H. (1976). Convergence and interaction of vestibular and deep somatic afferences upon neurons in the vestibular nuclei of the cat, Acta of Otolaryngology, 61, 168–188.CrossRefGoogle Scholar
  30. Gacek, R. R. (1974). Morphological aspects of the efferent vestibular system. In: H.H. Kornhuber (Ed.). Handbook of Sensory Physiology. Vol. VI: Vestibular System. Part I. Basic Mechanisms, New York: Springer Verlag, 213–220.Google Scholar
  31. Goldberg, J. M. & Fernandez, C. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations, Journal of Neurophysiology, 34, 635–660.PubMedGoogle Scholar
  32. Goldberg, J. M. & Fernandez, C. (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharges properties, Journal of Neurophysiology, 34, 676–684.PubMedGoogle Scholar
  33. Grantyn, A. & Berthoz, A. (1977). Synaptic actions of the superior colliculus on medial rectus motoneurons in the cat, Neuroscience, 2, 945–951.CrossRefGoogle Scholar
  34. Henn, V., Cohen, B. & Young, L. R. (1980). Visual vestibular interactions in motion perception and the generation of nystagmus, Boston: Neurosciences Research Program Bulletin.Google Scholar
  35. Heywood, P., Pujol, R. & Hilding, D. A. (1976). Development of the labyrinthine receptors in the guinea pig/cat and dog, Acta of Otolaryngology, 82, 359–367.CrossRefGoogle Scholar
  36. Hooker, D. (1952). The Prenatal Origin of Behavior, Kansas: Kansas University Press.Google Scholar
  37. Jouen, F. (1984). Visual Vestibular interactions in infancy, Infant Behavior and Development, 7, 135–145.CrossRefGoogle Scholar
  38. Jouen, F. (1985). The influence of body position on perception of orientation in infants, Behavioural Brain Research, 15, 231–245.CrossRefGoogle Scholar
  39. Jouen, F. (1987). Posture et motricitè oculaire. Communication prèsentèe á la Rèunion d’Optique Physiologique et Strabologique, Marseille.Google Scholar
  40. Jouen, F. (1988). Visual-proprioceptive control of posture in newborn infants. In: B. Amblard, A. Berthoz, & F.Clarac (Eds.). Posture and Gait: Development, Adaptation and Modulation, Amsterdam: Elsevier Science Publishers, 13–22.Google Scholar
  41. Jouen, F. & Lepecq, J. C. (1989). La sensibilitè au flux optique chez le nouveau-nè, Psychologie Française, 34 (1), 13–18.Google Scholar
  42. Lannou, J., Precht, W. & Cazin, L. (1979). The postalnatal development of functional properties of central vestibular neurons in the rat, Brain Research, 175, 219–232.PubMedCrossRefGoogle Scholar
  43. Lannou, J., Precht, W. & Cazin, L. (1983). Functional development of the central vestibular system. In: R. Romand (Ed.). Development of Auditory and Vestibular Systems, New York: Academic Press, 463–476.Google Scholar
  44. Lavigne-Rebillard, M., Dechesnes, C., Pujol, R., Sans, A. & Escudero, P. (1985). Dèveloppment de l’oreille interne pendant le premier trimestre de la grossesse. Diffèrenciation des cellules sensorielles et formation des premiéres synapses, Annales d’Oto-laryngologie, 102, 493–498.PubMedGoogle Scholar
  45. Lee, D. N. & Aronson, E. (1974). Visual proprioceptive control of standing in human infants, Perception and Psychophysics, 15, 529–532.CrossRefGoogle Scholar
  46. Ornitz, E. M. (1983). Normal and pathological maturation of vestibular function in the human child. In: R. Romand (Ed.). Development of Auditory and Vestibular Systems, New York: Academic Press, 479–536.Google Scholar
  47. Ornitz, E. M., Atwell, C. W., Walter, D. O., Hartmann, E. E. & Kaplan, A. R. (1979). The maturation of vestibular nystagmus in infancy and childhood, Acta of Otolaryngology, 88, 244–256.CrossRefGoogle Scholar
  48. Papaioannou, J. (1973). Electrical stimulation of vestibular nuclei: effects on spontaneous activity of lateral geniculate nucleus neurons, Archives Italiennes de Biologie, 11, 172–233.Google Scholar
  49. Parrad, J. & Cotterau, P. (1977). Apparition des rèactions rotatoires chez le rat nouveau-nè, Physiol. Behav., 18, 1017–1020.PubMedCrossRefGoogle Scholar
  50. Pavard, B. & Berthoz, A. (1977) Linear acceleration modifies the perceived velocity of a moving visual scene, Perception, 6, 529–540.PubMedCrossRefGoogle Scholar
  51. Precht, W. & Cazin, L. (1979). Functional deficits in the opto-kinetic system of albino rat, Experimental Brain Research, 37, 183–186.CrossRefGoogle Scholar
  52. Precht, W. & Strata, P. (1980). On the pathway mediating optokinetic responses in vestibular nuclear neurons, Neuroscience, 5, 777–787.PubMedCrossRefGoogle Scholar
  53. Rosenhall, U. (1972). Vestibular macular mapping in man, Annals of Otorhinolaryngology, 81, 339–351.Google Scholar
  54. Sans, A., Pujol, R. & Marty, R. (1968). Etude du reflexe de redressement dans la pèriode post-natale chez diverses mammiféres, Psychologie Française, 13, 351–353.Google Scholar
  55. Simpson, J. I., Soodak, R. E. & Hess, R. (1979). The accessory optic system and its relation to the vestibulo-cerebellum, Prog Brain Research, 5, 715–724.CrossRefGoogle Scholar
  56. Waespe, W. & Henn, V. (1977). Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation, Experimental Brain Research, 27, 523–538.CrossRefGoogle Scholar
  57. Woolacott, M., Debû, M. & Mowatt, M. (1987). Neuromuscular control of posture in the infant and the child: is vision dominant?, Journal of Motor Behavior, 19, 167–186.Google Scholar
  58. Wyke, B. (1975). The neurological basis of movement. A developmental review. In: K. Holt, (Ed.). Movement and Child Development, London: SIMP.Google Scholar
  59. Young, L. R., Oman, C. M. (1969). Model for vestibular adaptation to horizontal rotation, Aerospace Medicine, 4, 1076–1080.Google Scholar
  60. Young, L. R., Oman, C. M. & Dichgans, J. M. (1975). Influence of head orientation on visually induced pitch and roll sensations, Aviation Space Environnement Medicine, 46, 264–268.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • François Jouen

There are no affiliations available

Personalised recommendations