Skip to main content

Technical and methodological considerations on the measurement of evoked potentials

  • Chapter
Book cover Evoked Potential Manual

Abstract

The quality of an evoked potential study depends first and foremost on the reliability of the aquired waveforms. Although the recording of evoked potentials has largely become a matter routine clinical practice, there is a number of technical and methodological aspects which need attention. These aspects are:

  1. 1.

    choice of stimulus parameters;

  2. 2.

    proper recording and amplification of the signals evoked by the stimuli;

  3. 3.

    application of signal enhancement techniques in view of the generally small waveform amplitudes;

  4. 4.

    recognition and possible elimination of technical and biological artifacts;

  5. 5.

    assessment of waveform reliability;

  6. 6.

    identification and labeling of waveform components;

  7. 7.

    comparison to normative data for the purpose of reporting possible abnormalities;

  8. 8.

    choice of a suitable way to present the results numerically or graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison T. Recovery functions of somatosensory evoked responses in man. Electroenceph clin Neurophysiol 1962; 14: 331–343

    Article  PubMed  CAS  Google Scholar 

  • Boston JR, Ainslie PJ. Effects of analog and digital filtering on brainstem auditory evoked potentials. Electroenceph clin Neurophysiol 1980; 48: 361–364

    Article  PubMed  CAS  Google Scholar 

  • Bowker AH, Lieberman GJ. Engineering Statistics. Prentice Hall, Englewood Cliffs, 1972.

    Google Scholar 

  • Campbell JA, Leandri M. The effects of high pass filters on computer-reconstructed evoked potentials. Electroenceph clin Neurophysiol 1984; 57: 99–101

    Article  PubMed  CAS  Google Scholar 

  • Chatrian GE, Picton WT, Celesia GG. American Electrographic guidelines for clinical evoked potential studies. J Clin Neurophysiol 1984; 1: 3–53.

    Article  Google Scholar 

  • Colon EJ, Van Münster E, Hommes OR, Boumen-v.d. Eerden R, Dirven C. SSEP chronotopography in patients with multiple sclerosis. Acta Neurol Scand 1984; 69: 35–41.

    Article  Google Scholar 

  • Colon EJ, De Weerd AW. Long-latency somatosensory evoked potentials J Clin Neurophysiol 1986; 3: 279–296.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham K, Halliday AM, Jones SJ. Simulation of “stationary” SAP and SEP phenomena by 2-dimensional potential field modelling. Electroenceph clin Neurophysiol 1986; 65: 416428.

    Google Scholar 

  • Desmedt JE, Brunko E, Debecker J and Carmeliet J. The system bandpass required to avoid distortion of early components when averaging somatosensory evoked potentials. Electroenceph clin Neurophysiol 1974; 37: 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Brunko E, Debecker J. Maturation of somatosensory evoked potentials in normal infants and children, with special reference to the early N1 component. Electroenceph clin Neurophysiol 1976; 40: 43–58.

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Nguyen TH, Bourguet M. Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses. Electroenceph clin Neurophysiol 1987; 68: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • De Weerd JPC. Facts and fancies about a posteriori “Wiener” filtering. IEEE Trans Biomed Engng 1981a; BME-28: 252–257.

    Article  Google Scholar 

  • De Weerd JPC. A posteriori time-varying filtering of averaged evoked potentials. I. Introduction and conceptual basis. Biol Cybern 1981b; 41: 211–222.

    Article  PubMed  Google Scholar 

  • Dimitrijevic MR, Larsson LE, Lehmkuhl D and Sherwood A. Evoked spinal cord and nerve root potentials in humans using a noninvasive recording technique. Electroenceph clin Neurophysiol 1978; 45: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Donchin E, Calloway E, Cooper R. Publication criteria for studies of evoked potentials in man: Report of a committee. JE Desmedt (ed). Attention, voluntary contraction and event related potentials in man. Prog Clin Neurophysiol 1977; 1–11.

    Google Scholar 

  • Doyle DJ, Hyde ML. Bessel filtering of brainstem auditory evoked potentials. Electroenceph clin Neurophysiol 1981; 51: 446–448.

    Article  PubMed  CAS  Google Scholar 

  • Duffy FH (ed.). Topographic Mapping of Brain Electrical Activity. Butterworth, 1986.

    Google Scholar 

  • Eisen A, Roberts K, Low M, Hoirch M, Lawrence P. Questions regarding the sequential neural generator theory of the somatosensory evoked potential raised by digital filtering. Electroenceph clin Neurophysiol 1984; 59: 388–395.

    Article  PubMed  CAS  Google Scholar 

  • Elton M, Scherg M, Von Cramon D. Effects of high pass filter frequency and slope on BAEP amplitude, latency and waveform. Electroenceph clin Neurophysiol 1984; 57: 490–494.

    Article  PubMed  CAS  Google Scholar 

  • Eriksen KJ, Wright KW. Influence of electrode montage on dipole localization. J Clin Neurophysiol 1987; 4: 268–269.

    Google Scholar 

  • Geddes LS. Bioelectrodes Am J EEG Technol 1975; 15: 99–106.

    Google Scholar 

  • Gevins AS. Analysis of the electromagnetic signals of the human brain: Milestones, obstacles, and goals. IEEE Trans Biomed Engng 1984; BME-31: 833–850.

    Article  Google Scholar 

  • Hari R, Ilmoniemi RJ. Cerebral magnetic fields. CRC Crit Rev Biomed Engng 1986; 14: 93–126.

    CAS  Google Scholar 

  • International Electrical Committee IEC 601–1: Safety of medical electrical equipment, Part 1: General requirements. IEC, Geneva, 1977.

    Google Scholar 

  • Jackson SA, Barber C. The effect of temporal stimulus parameters upon the VEP. In: Evoked potentials, Proceedlings of Int. Evoked Potential Symposium, Nottingham, MTP Press, Lancaster, 1980.

    Google Scholar 

  • Jewett DL, Martin WH, Sininger YS, Gardi JN. The 3-channel Lissajous trajectory of the auditory brain-stem response. I. Introduction and overview. Electroenceph clin Neurophysiol 1987; 68: 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Jewett DL, Williston JS. Auditory evoked far fields averaged from the scalp of humans. Brain, 1971; 94:681–696.

    Article  PubMed  CAS  Google Scholar 

  • Kraus N, Reed N, Smith DI, Stein L, Cartee C. High-pass filter settings affect the detectability of MLRs in humans. Electroenceph clin Neurophysiol 1987; 68: 234–236.

    Article  PubMed  CAS  Google Scholar 

  • Kimura J, Mitsodome A, Beck DO, Yamada T, Dickins QS. Field distributions of antidromically activated digital nerve potentials: model for far-field recording. Neurology (NY) 1983; 33: 1164–1169.

    CAS  Google Scholar 

  • Maccabee PJ, Pinkhasov EI, Cracco RQ. Short latency somatosensory evoked potentials to median nerve stimulation: Effect of low frequency filter. Electroenceph clin Neurophysiol 1983; 55: 34–44.

    Article  PubMed  CAS  Google Scholar 

  • Maccabee PJ, Hassan NR, Cracco RQ, Schiff JA. Short latency somatosensory and spinal evoked potential: Power spectra and comparison between high pass analog and digital filter. Electroenceph clin Neurophysiol 1986; 65: 177–187.

    Article  PubMed  CAS  Google Scholar 

  • McGill KC, Cummins KL, Dorfman LJ. On the nature and elimination of stimulus artifact in nerve signals evoked and recorded by surface electrodes. IEEE Trans Biomed Engng 1982; BME-29: 129–137.

    Article  Google Scholar 

  • Möcks J, Gasser T, Tuan PD. Variability of single evoked potentials evaluated by two new statistic tests. Electroenceph clin Neurophysiol 1984; 57: 571–580.

    Article  PubMed  Google Scholar 

  • Möcks J, Gasser T, K[ö]ohler W, De Weerd JPC. Does filtering and smoothing of average evoked potentials really pay? A statistical comparison. Electroenceph clin Neurophysiol 1986; 64: 469–480.

    Article  PubMed  Google Scholar 

  • Möller AR, Janetta PJ. Evoked potentials from the inferior culliculus in man Electroenceph clin Neurophysiol 1983; 53: 612–620.

    Article  Google Scholar 

  • Morris HM, Lüders H, Lesser RP, Dinner DS, Klem GH. Localizing sharp epileptoform focii by increasing spatial resolution. Electroenceph clin Neurophysiol 1986; 63: 107–111.

    Article  PubMed  Google Scholar 

  • Meijs JWH, Bosch FGC, Peters MJ, Lopes da Silva FH. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head. Electroenceph clin Neurophysiol 1987; 66: 286–298.

    Article  PubMed  CAS  Google Scholar 

  • McKay WB, Galloway BL. Technological aspects of recording evoked potentials from the cauda equina and lumbosacral spinal cord in man Am J EEG Technol 1979; 19: 83–96.

    Google Scholar 

  • National Fire Protection Association: Electricity in patient care facilities. NFPA 1973; 76 B-T, Boston.

    Google Scholar 

  • Pratt H, Politoske D, Starr A. Mechanically and electrically evoked somatosensory potentials in humans: Effects of stimulus presentation rate. Electroenceph clin Neurophysiol 1980; 49: 240–249.

    Article  PubMed  CAS  Google Scholar 

  • Pratt H, Ben-David Y, Peled R, Podoshin L, Scharf B. Auditory brainstem evoked potentials: Clinical promise of increasing stimulus rate. Electroenceph clin Neurophysiol 1981; 51: 80–90.

    Article  PubMed  CAS  Google Scholar 

  • Perrin F, Perrier J, Bertrand O, Giard MH, Echalier JF. Mapping of scalp potentials by surface spline interpolation. Electroenceph clin Neurophysiol 1987; 66: 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Rothman HH, Davis H, Hay IS. Slow evoked cortical potentials and temporal features of stimulation. Electroenceph clin Neurophysiol 1970; 29: 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Ruchkin DS. An analysis of average response computations based upon aperiodic stimuli. IEEE Trans Biomed Engng 1965; BME-12: 97–94.

    Article  Google Scholar 

  • Rosini PM, Cracco RQ, Cracco JB, House WJ. Short latency somatosensory evoked potentials to peroneal nerve stimulation: Scalp toppography and the effect of different frequency filters. Electroenceph clin Neurophysiol 1981; 52: 540–552.

    Article  Google Scholar 

  • Rottevee JJ. The maturation of auditory evoked responses in preterm and term infants. Ph D Thesis, Univ of Nijmegen, SSN Nijmegen, 1986.

    Google Scholar 

  • Rotteveel JJ, Colon EJ, Stegeman DF, Visco YM. The maturation of the central auditory conduction in preterm infants until three months post term. IV. Composite group averages of the cortical auditory evoked responses (ACRs). Hearing Res 1987; 27: 85–93.

    Article  CAS  Google Scholar 

  • Salamy A, McKean CM, Pettett G, Mendelson T. Auditory brainstem recovery processes from birth to adulthood. Psychophysiology, 1978; 15: 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Scherg M, Von Cramon D. Evoked dipole source potentials of the human auditory cortex. Electroenceph clin Neurophysiol 1986; 65: 344–360.

    Article  PubMed  CAS  Google Scholar 

  • Schimmel H. The (+/−) reference: accuracy of estimated mean components in average evoked potential studies. Science, 1967; 157: 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Sgro JA, Emerson RG. Phase synchronized triggering: a method for coherent noise elimination in evoked potential recording. Electroenceph clin Neurophysiol 1985; 60: 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Sgro JA, Emerson RG, Pedley TA. Real-time reconstruction of evoked potentials using a new two-dimensional filter method. Electroenceph clin Neurophysiol 1985; 57: 571–580.

    Google Scholar 

  • Stapells DR, Picton TW. Technical aspects of brainstem evoked potential audiometry using tones. Ear and Hearing, 1981; 2: 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Stegeman DF, Van Oosterom A, Colon EJ. Far-field evoked potential components induced by a propagating generator: Computational evidence. Electroenceph clin Neurophysiol 1987; 67: 176–187.

    Article  PubMed  CAS  Google Scholar 

  • Stockard JJ, Stockard JE, Sharbrough FW. Non- pathologic factors influencing brainstem auditory evoked potentials. Am J EEG Technol 1978; 18: 177–209.

    Google Scholar 

  • Stockard JJ, Stockard JE, Sharbrough FW. Visually evoked potentials to electronic pattern reversal: Latency variations with gender, age and technical factors. Am J EEG Technol 1979; 19: 171–204.

    Google Scholar 

  • Stockard JE, Westmoreland BF. Technical considerations in the recording and interpretation of the brainstem auditory evoked potential for neonatal neurologic diagnosis. Am J EEG Technol1981; 21: 31–54.

    Google Scholar 

  • Suzuki T, Kobayashi K, Takagi N. Effects of stimulus repetition rate on slow and fast components of auditory brainstem responses. Electroenceph clin Neurophysiol 1986; 65: 150–156.

    Article  PubMed  CAS  Google Scholar 

  • Underwriters Laboratories: UL544: Standard for medical and dental equipment. 1980; New York.

    Google Scholar 

  • Van Olphen AF, Rodenburg M, Verwey C. Influence of the stimulus repetition rate on brainstem evoked responses in man Audiology 1979; 18: 288–394.

    Google Scholar 

  • Walter DO. A posteriori “Wiener filtering” of average evoked responses. Electroenceph clin Neurophysiol 1969; Suppl. 27: 61–70.

    Google Scholar 

  • Wastell DG. The application of low-pass linear filters to evoked potential data: Filtering without phase distortion. Electroenceph clin Neurophysiol 1979; 46: 355–356.

    Article  PubMed  CAS  Google Scholar 

  • Wastell DG. Temporal uncertainty and the recovery function of the auditory ER In: Evoked Potentials, Proceedings of Int. Evoked Potentials Symposium, Nottingham, MTP Press, 1980; Lancaster.

    Google Scholar 

  • Woods DL, Courchesne E, Hillyard SA, Galambos R. Recovery cycles of event-related potentials in multiple detection tasks. Electroenceph clin Neurophysiol 1980; 50: 335–347.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman L, Williamson SJ. Magnetic location of cortical activity. Ann New York Acad Sc 1982;388: 197–213.

    Article  CAS  Google Scholar 

  • Yagi T, Kaga K. The effect of the click repetition rate on the latency of the auditory evoked brainstem response and its clinical use for a neurological diagnosis. Arch Otorhinolaryngol 1979; 222:91–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publisher

About this chapter

Cite this chapter

de Weerd, J.P.C., Stegeman, D.F. (1990). Technical and methodological considerations on the measurement of evoked potentials. In: Colon, E.J., Visser, S.L. (eds) Evoked Potential Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2059-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2059-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7424-7

  • Online ISBN: 978-94-009-2059-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics