Skip to main content

Modelling Isothermal Waves of Chemical Reaction

  • Chapter
Chemistry and Physics of Energetic Materials

Part of the book series: NATO ASI Series ((ASIC,volume 309))

  • 718 Accesses

Abstract

Autocatalysis forms the basis for propagating waves of isothermal chemical reaction. When autocatalysis is represented by the “mass action” cubic and quadratic forms (A + 2B → 3B and A + B → 2B respectively), extremely simple prototypes are generated. They apply very well to more complex schemes. The fact that in the cubic case simple analytical solutions are possible is of great value in recognizing trends and making predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Luther, R. (1906) Z. Elek. 12, 596.

    Article  CAS  Google Scholar 

  2. Luther, R., Arnold, R., Showalter, K. and Tyson, J. J. (1987) J. Chem. Educ. 64, 740, 742.

    Google Scholar 

  3. Fisher, R. A. (1937) Ann. Eugen. 7, 355.

    Article  Google Scholar 

  4. Kolmogorov, A., Petrovsky, I. & Piscounov, N. (1937) Moscow Univ. Bull. Math. A1, 1.

    Google Scholar 

  5. Voronkov, V. G. & Semenov, N. N. (1939) Zh..Fiz. Khim, 13, 1695.

    CAS  Google Scholar 

  6. Zel’dovich, Y. B. (1980) Mathematical Theory of Combustion and Flames, Nauka, Moscow.

    Google Scholar 

  7. Hanna, A., Saul, A. & Showalter, K. (1982) J. Am. Chem. Soc. 104, 3838

    Article  CAS  Google Scholar 

  8. Showalter, K., Noyes, R. M. & Turner, H. (1979) J. Am. Chem. Soc. 101, 7463.

    Article  CAS  Google Scholar 

  9. Showalter, K. (1987) in G. R. Freeman (ed.), Kinetics of Nonhomogeneous Processes, John Wiley.

    Google Scholar 

  10. Gray, P., Showalter, K. & Scott, S. K. (1987) J. Chimie Physique 84

    Google Scholar 

  11. Gray, P., Merkin, J. H., Needham, D. J., & Scott, S. K. (in press) Proc. Roy. Soc. A.

    Google Scholar 

  12. Merkin, J. & Needham, D. J. (1989) Proc. Roy. Soc. A 424, 187.

    Article  CAS  Google Scholar 

  13. Gray, P. & Scott, S. K. (1990) Chemical Oscillations and Instabilities, Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gray, P. (1990). Modelling Isothermal Waves of Chemical Reaction. In: Bulusu, S.N. (eds) Chemistry and Physics of Energetic Materials. NATO ASI Series, vol 309. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2035-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2035-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7413-1

  • Online ISBN: 978-94-009-2035-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics