Effects of Temperature Changes on Infaunal Circalittoral Bivalves, Particularly T. Tenuis and T. Fabula

  • James G. Wilson
Part of the Developments in Hydrobiology book series (DIHY, volume 57)

Abstract

The limits of thermal tolerance are associated closely with the latitudinal and local variations found within an animals’ range, yet in most situations the absolute limits of tolerance are seldom reached. Under these conditions the survival of a species is related more to its ability for capacity adaptations (e.g. growth rate, reproduction) than to its absolute tolerances (resistance adaptations).

Exceptions to the above can occur in the littoral zone, with the effect being proportional to the height up to the shore: here both elevated temperatures during the summer and lower temperature, during the winter especially those low enough to result in ice, can lead directly to mortality.

The most pronounced sub-lethal effects are those on growth and reproduction. Under conditions of elevated temperatures growth, especially in the initial stages, is faster. Reproduction is earlier in warmer waters and may occur more than once or continuously throughout the summer. This may lead to them being in poorer condition compared to northern populations which spawn once in spring for overwintering and hence to decreased long term survival.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, A.D., P.R.O. Barnett, A. Bodoy & H. Massé, 1980a. Upper temperature tolerances of some European molluscs. I. Tellina fabula and Tellina tenuis — Mar. Biol. 58: 33–39.CrossRefGoogle Scholar
  2. —, 1980b. Upper temperature tolerances of some European molluscs. II. Donax vittatus, D. semistriatus and D. trunculus.—Man Biol. 58: 41–46.CrossRefGoogle Scholar
  3. Bachelet, G., 1980. Growth and recruitment of the Tellinid bivalve Macoma balthica at the southern limit of its geographical distribution.—Mar. Biol. 59: 105–117.CrossRefGoogle Scholar
  4. Barnett, P.R.O., 1971. Some changes in intertidal sand communities due to thermal pollution.—Proc. R. Soc. Lond. (B) 177: 353–364.CrossRefGoogle Scholar
  5. Barnett, P.R.O. & B.L.S. Hardy, 1984. Thermal deformations. In: O. Kinne. Marine Ecology. Volume 5.4. John Wiley & Sons, London: 1769–1963.Google Scholar
  6. Beukema, J.J., 1979. Biomass and species richness of the macrobenthic animals living on a tidal flat area in the Dutch Wadden Sea: effects of a severe winter.—Neth. J. Sea Res. 13: 203–223.CrossRefGoogle Scholar
  7. Beukema, J.J. & M. Desprez, 1986. Single and dual animal growing seasons in the tellinid bivalve Macoma balthica (L.).—J. exp. mar. Biol. Ecol. 102: 35–45.CrossRefGoogle Scholar
  8. Beukema, J.J., E. Knol & G.C. Cadée, 1985. Effects of temperature on the length of the annual growing season in the tellinid bivalve Macoma balthica (L.) living on the tidal flats in the Dutch Wadden Sea.—J. exp. mar. Biol. Ecol. 90: 129–144.CrossRefGoogle Scholar
  9. Beukema, J.J. & B.W. Meehan, 1985. Latitudinal variation in linear growth and other shell characteristics of Macoma balthica.—Mar. Biol. 90: 27–33.CrossRefGoogle Scholar
  10. Fry, F.E.J., 1947. Effects of the environment on animal activity.—Univ. Toronto Stud. Biol. Ser. 55: 5–62.Google Scholar
  11. Henderson, J.T., 1929. Lethal temperatures of Lamellibran-chiata.—Contr. Canad. Biol. Fish. N.S. 4: 397–411.CrossRefGoogle Scholar
  12. Holme, N.A., 1949. The fauna of sand and mud banks near the mouth of the Exe estuary—J. mar. biol. Ass. U.K. 28: 189–237.CrossRefGoogle Scholar
  13. Kanwisher, J.W., 1955. Freezing in intertidal animals.—Biol. Bull. 109: 56–63.CrossRefGoogle Scholar
  14. Kennedy, V.S. & J.A. Mihursky, 1971. Upper temperature tolerance of some estuarine bivalves.—Chesapeake Sci. 12: 193–204.CrossRefGoogle Scholar
  15. Massé, H., 1972. Contribution à l’étude de la macrofaune de peuplements des sables fins infralittoraux des côtes de Provence. VI. — Données sur la biologie des espèces.—Téthys 4: 63–84.Google Scholar
  16. McIntyre, A.D., 1971. The range of biomass in intertidal sand with special reference to the bivalve Tellina tenuis.—J. mar. biol. Ass. U.K. 50: 561–575.Google Scholar
  17. McMahon, R.F. & J.G. Wilson, 1981. Seasonal respiratory responses to temperature and hypoxia in relation to burrowing depth in three intertidal bivalves—J. therm. Biol. 6: 267–277.CrossRefGoogle Scholar
  18. Newell, R.C. & G.M. Branch, 1980. The influence of temperature on the maintenance of energy balance in marine invertebrates—Adv. mar. Biol. 17: 329–396.CrossRefGoogle Scholar
  19. Salvat, B., 1967. Mollusques des plages océaniques et semi-abritées du Bassin d’Arcachon.—Bull. Mus. natn. Hist. nat. (2e série) 39: 1177–1191.Google Scholar
  20. Salzwedel, H., 1979. Reproduction, growth, mortality and variations in abundance and biomass of Tellina fabula (Bivalvia) in the German Bight in 1975/76.—Veröff. Inst. Meeresforsch. Bremerh. 18: 111–202.Google Scholar
  21. Stephen, A.C., 1928. Notes on the biology of Tellina tenuis da Costa.—J. mar. biol. Ass. U.K. 15: 327–341.Google Scholar
  22. —, 1932. Notes on the biology of some lamellibranchs in the Clyde area.—J. mar. biol. Ass. U.K. 18: 51–68.CrossRefGoogle Scholar
  23. Trevallion, A., 1971. Studies on Tellina tenuis da Costa. III. Aspects of general biology and energy flow.—J. exp. mar. Biol. Ecol. 7: 95–122.CrossRefGoogle Scholar
  24. Warwick, R.M., C.L. George & J.R. Davies, 1978. Annual macrofauna production in a Venus community.—Estuar. coast, mar. Sci. 7: 215–241.CrossRefGoogle Scholar
  25. Wilson, J.G., 1976. Abundance and distribution of British Tellinidae. Ph.D. Thesis, University of Glasgow.Google Scholar
  26. —, 1978. Upper temperature tolerance of Tellina tenuis and T. fabula—Mar. Biol. 45: 123–128.CrossRefGoogle Scholar
  27. —, 1979. The burrowing of Tellina tenuis da Costa and Tellina fabula Gmelin in relation of sediment characteristics.—J. Life Sci. R. Dubl. Soc. 1: 91–98.Google Scholar
  28. —, 1981. Temperature tolerance of circatidal bivalves in relation to their distribution.—J. therm. Biol. 6: 279–286.CrossRefGoogle Scholar
  29. —, 1985. Oxygen consumption of Tellina fabula Gmelin in relation to temperature and low oxygen tension.— Soosiana 13: 27–32.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • James G. Wilson
    • 1
  1. 1.Environmental Sciences UnitTrinity CollegeDublin 2Ireland

Personalised recommendations