Skip to main content

Remaining life Evaluation for Steam Turbine Rotors

  • Chapter
  • 755 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 174))

Abstract

The state-of-the-art for cumulative damage of low alloy rotor steels at high temperatures due to creep-fatigue effects, and to fretting fatigue and wear effects has been identified from a review of the relevant literature. The applicability of these results to problems of rotor-blade attachments, and to the heat groove rotor regions is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manson, S. S., ‘Fatigue: A Complex Subject — Some Simple Approximations,’ Experimental Mechanics, 5 (7), pp. 93–226, 1965.

    Google Scholar 

  2. Morrow, J. D., ‘Internal Friction, Damping and Cyclic Plasticity,’ ASTM STP No. 378, p. 72, ASTM, Philadelphia, 1965.

    Google Scholar 

  3. Berling, J. T., Conway, J. B., ‘A New Approach to the Prediction of Low-Cycle Fatigue Data,’ Metallurgical Trans., 1 (I), pp. 805–809, April 1970.

    Google Scholar 

  4. Coffin, L. F., Jr., ‘The Effect of Frequency on the Cyclic Strain and Low Cycle Fatigue Behavior of Cast Udimet 500 at Elevated Temperature,’ Metallurgical Trans. 12, pp. 3105–3113, November 1971.

    Article  Google Scholar 

  5. Manson, S. S., Halford, G. R., and Hirschherg, M. H., ‘Creep-Fatigue Analysis by Strain-Range Partitioning,’ Symposium on Design for Elevated Temperature Environment, ASME, pp. 12–24, May 1971.

    Google Scholar 

  6. Manson, S. S., Hirschberg, M. H., ‘Crack Initiation and Propagation in Notched Fatigue Specimens,’ Proceedings First International Conference on Fracture, 1, pp. 478–498, 1965.

    Google Scholar 

  7. Manson, S. S., Halford, G. R., and Hirschberg, M. H., ‘Creep-Fatigue Analysis by Strain-range Partitioning’, Design for Elevated Temperature Environment. ASME, 1971, pp. 12–24, disc. pp. 25–28.

    Google Scholar 

  8. Dieter, G. E., Mechanical Metallurgy, 3rd Edition, McGraw-Hill Book Company, pp. 468–470, 1986.

    Google Scholar 

  9. Leven, Milton M., ‘The Interaction of Creep and Fatigue for a Rotor Steel,’ Experimental Mechanics, Vol. 13, No. 9, pp. 353–372, September 1973.

    Article  Google Scholar 

  10. Ellison, E. G., Paterson, A. J. F., ‘Creep Fatigue Interactions in a 1 Cr Mo V Steel (Part 1),’ Proceedings IMechE, Vol. 190, December 1976.

    Google Scholar 

  11. Jaske, C. E., Mindlin, H., ‘Elevated Temperature Low Cycle Fatigue Behavior of 2 1/4 Cr - 1 Mo and 1 Cr − 1 Mo − 1/4 V Steels,’ Symposium on 2 1/4 Chrome 1 Milybdenum Steel in Pressure Vessels and Piping, ASME, pp. 137–210, 1971.

    Google Scholar 

  12. Long, S. S., ‘High Temperature Properties and Constitutive Equations for 1 Cr 1/2 Mo Steel,’ Transactions ASME, Vol, 100, August 1978.

    Google Scholar 

  13. Coffin, L. F., Jr., ‘The Effect of Frequency on the Cyclic Strain and Low Cycle Fatigue Behavior of Cast Udimet 500 at Elevated Temperature,’ Metallurgical Trans, 12, pp. 3105–13, November 1971.

    Article  Google Scholar 

  14. Berling, J. T., Conway, J. B., ‘A New Approach to the Prediction of Low cycle Fatigue Data,’ Metallurgical Trans., 1 (1), pp. 805–809. April 1970.

    Google Scholar 

  15. Ellis, J. R., Esztergar, E. P., ‘Considerations of Creep-Fatigue Interaction in Design Analysis,’ Symposium on Design for Elevated Temperature Environment, ASME, pp. 29–33, May 1971.

    Google Scholar 

  16. Neuber, E., ‘Theoretical Determination of Fatigue Strength at Stress Concentration,’ Technical Report AFML-TR-68-20, Wright-Patterson Air Force Base, Ohio.

    Google Scholar 

  17. Juvinall, Robert, C., Engineering Considerations of Stress, Strain, and Strength, McGraw-Hill Book Company, 1967.

    Google Scholar 

  18. Peterson, R. E., Stress Concentration Factors, John Wiley and Sons, Incorporated, 1974.

    Google Scholar 

  19. Heywood, R. B., Designing Against Fatigue of Metals, Reinhold Publishing Corporation, New York, New York, 1962.

    Google Scholar 

  20. Tilly, G. P., ‘Fracture Behavior of Two Creep Resistant Materials Subjected to Cyclic Loading at Elevated Temperature,’ Proceedings, IMechE, 180, Part I, No. 46, 1045, 1966.

    Google Scholar 

  21. Tilly, G. P., ‘Influence of Static and Cuclic Loads on the Deformation Behavior of an Alloy Steel at 600°C,’ International Conference Thermal and High Strain Fatigue, Inst. Metals, 1967.

    Google Scholar 

  22. Taira, S., ‘Lifetime of Structures Subjected to Varying Loads and Temperatures,’ Creep in Structures, N. J. Hoff ed., Academic Press, NY, 1962.

    Google Scholar 

  23. Marshall, P., Cook, T, R., ‘Prediction of Failure of Materials Under Cyclic Loading,’ International Conference Thermal Stresses and Thermal Fatigue, CEGB, Berkeley, 1969

    Google Scholar 

  24. Palmgren, A., ‘Die Lebendauer Von Lugellagern,’ Z.V.D.I. (Z. Deut. Ingr.), 68: pp. 339–341, 1924.

    Google Scholar 

  25. Miner, M. A., ‘Cumulative Damage in Fatigue,’ Transactions ASME, Series E, Journal of Applied Mechanics, 67: A159–A164, 1945.

    Google Scholar 

  26. Tiara, S., ‘Creep in Structures,’ p. 96, Academic Press, Incorporated, New York, NY, 1962.

    Google Scholar 

  27. Manson, S. S., Halford, G. R., ‘A Method of Estimating High Temperature Low Cycle Fatigue Behavior of Materials,’ Proceedings of the International Conference on Thermal and High Strain Fatigue, London, June 6–7, 1967, Monograph and Report Series No. 32, The Metals and Metallurgy Trust, London, 1967.

    Google Scholar 

  28. Manson, S. S., Freche, J. C., Ensign, C. R., ‘Application of a Double Linear Damage Rule to Cumulative Fatigue,’ ASTM, Special Technical Publication No. 415, p. 384, 1967.

    Google Scholar 

  29. Leven, Milton, M., ‘The Interaction of Creep and Fatigue for a Rotor Steel,’ Experimental Mechanics, Vol. 13, No. 9, pp. 353–372, September 1973.

    Article  Google Scholar 

  30. Halford, G. R., Manson, S. S., ‘Reexamination of Cumulative Fatigue Damage Analysis — An Engineering Prospective,’ NASA TM 87325, Prepared for the Symposium on Mechanics of Damage and Fatigue, Sponsored by the International Union of Theoretical and Applied Mechanics, Haifa-Tel Aviv, Israel, July 1–5, 1985.

    Google Scholar 

  31. Conway, J. B., Sentz, R. H., and Berling, J. T., Fatigue, Tensile, and Relaxation Behavior of Stainless Steels, Mar-Test Incorporated, Cincinnati, Ohio. Also U.S. Atomic Energy Commission TID-26135, Oak Ridge, Tennessee, 1975.

    Book  Google Scholar 

  32. Grover, H. J., ‘An Observation Concerning the Cycle Ratio in Cumulative Damage,’ From Fatigue in Aircraft Structure, ASTM No. 274, pp. 120–124, 1960.

    Chapter  Google Scholar 

  33. Manson, S. S., Freche, J. C., and Ensign, C. R., ‘Application of a Double Linear Damage Rule to Cumulative Fatigue,’ ASTM Special Technical Publication No. 415, p. 384, 1967.

    Google Scholar 

  34. Rey, W. K., ‘Cumulative Fatigue Damage At Elevated Temperatures,’ Report NACA-TN-4284, National Advisory Committee for Aeronautics, 1958.

    Google Scholar 

  35. Manson, S. S., ‘Interpretive Report on Cumulative Fatigue Damage in the Low Cycle Range,’ Weld J., 43 (8), 344, 1964.

    Google Scholar 

  36. Ohji, K., Miller, R. W., and Marin, J., ‘Cumulative Damage and Effect of Mean Strain in Low-Cycle Fatigue of a 2024-T351 Aluminum Alloy,’ Transactions ASME, Series D, Journal of Basic Engineering, 88: 801–810, 1966.

    Google Scholar 

  37. Manson, S. S., Halford, G. R., ‘Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage,’ NASA Technical Memorandum 81517, April 1980.

    Google Scholar 

  38. Priest, R. H., Ellison, E. G., ‘An Assessment of Life Analysis Techniques for Fatigue-Creep Situation,’ Res Mechanica 4, pp. 127–150, 1982.

    Google Scholar 

  39. Manson, S. S., Halford, G. R., ‘Re-Examination of Cumulative Fatigue Damage Analysis — An Engineering Perspective,’ Engineering Fracture Mechanics, Vol. 25, Nos, 5/6, pp. 539–571, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rieger, N.F. (1990). Remaining life Evaluation for Steam Turbine Rotors. In: Montalvão e Silva, J.M., Pina da Silva, F.A. (eds) Vibration and Wear in High Speed Rotating Machinery. NATO ASI Series, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1914-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1914-3_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7354-7

  • Online ISBN: 978-94-009-1914-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics