Skip to main content

Past and possible future directions in plasticity

  • Chapter
Plasticity and failure behavior of solids

Part of the book series: Fatigue and Fracture ((FAAF,volume 3))

  • 159 Accesses

Abstract

This is an opportune time in the development of the subject of plasticity, to which Professor Rabotnov has made so many pioneering contributions, for a review of the past, an assessment of the current state of affairs, and a projection into the future. Extensive application now is made routinely of the well-established techniques and concepts of basic plasticity theory to a host of practical problems of analysis and design in aerospace, civil, and mechanical engineering. Engineering practice will continue to absorb the advances made through research as those advances are clarified and sufficiently simplified for use by those who are not experts in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. RABOTNOV, Y.N., The theory of creep and its applications, Plasticity, eds. E.H. Lee and P.S. Symonds, Pergamon Press, 1960, pp. 338–346.

    Google Scholar 

  2. TRESCA, H., Mémoire sur le poinçonnage des métaux et des matières plastiques, Comptes Rendus, Paris, Vol. 70, 1870, pp. 27–31.

    Google Scholar 

  3. COULOMB, CA., Essai sur une application des règles de maximis et minimis à quelque problèmes de statique, relatifs à l’architecture, Mémoires de Mathématique de l’Académie Royale des Sciences, Paris, Vol. 7, 1773, pp. 343–382.

    Google Scholar 

  4. LÉVY, M., Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état, Comptes Rendus, Paris, Vol. 70, 1870, pp. 1323–1325

    Google Scholar 

  5. SOKOLOVSKY, V.V., Statics of Soil Media, Butterworth, 1960; Theory of Plasticity, Moscow, 1946.

    Google Scholar 

  6. REUSS, A., Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie, ZAMM, Vol. 10, 1930, pp. 766–214.

    Google Scholar 

  7. MISES, R. VON, Mechanik der plastischen Formänderung von Kristallen, ZAMM, Vol. 8, 1928, pp. 161–185.

    Article  MATH  Google Scholar 

  8. ODQVIST, F.K.G., Die Verfestigung von flusseisenähnlichen Körpern. Ein Beitrag zur Plastizitätstheorie, ZAMM, Vol. 13, 1933, pp. 360–363.

    Article  MATH  Google Scholar 

  9. MELAN, E., Zur Plastizität des räumlichen Kontinuums, Ingenieur-Archiv, Vol. 9, 1938, pp. 116–126.

    Article  MATH  Google Scholar 

  10. DRUCKER, D.C., The continuum theory of plasticity on the macroscale and microscale, Journal of Materials ASTM, Vol. 1, 1966, pp. 873–910.

    Google Scholar 

  11. PALMER, A.C., MEIER, G., and DRUCKER, D.C., Normality relations and convexity of yield surfaces for unstable materials or structural elements, Journal of Applied Mechanics ASME, Vol. 34, 1967, pp. 464–470.

    Google Scholar 

  12. DRUCKER, D.C., Coulomb friction, plasticity, and limit loads, Journal of Applied Mechanics ASME, Vol. 21, 1954, pp. 71–74.

    MathSciNet  Google Scholar 

  13. BUTLER, T. and DRUCKER, D.C., Yield strength and microstructural scale: a continuum study of pearlitic vs. spheroidized steel, Journal of Applied Mechanics ASME, Vol. 40, 1973, pp. 780–784.

    Article  ADS  Google Scholar 

  14. OSGOOD, W.R., Combined-stress tests on 24S-T aluminum alloy tubes, Journal of Applied Mechanics ASME, Vol. 14, 1947, pp. A147–A153.

    Google Scholar 

  15. DRUCKER, D.C., Relation of experiments to mathematical theories of plasticity, Journal of Applied Mechanics ASME, Vol. 16, 1949, pp. A349–A357.

    MathSciNet  Google Scholar 

  16. PRAGER, W., The stress-strain laws of the mathematical theory of plasticity. A survey of recent progress, Journal of Applied Mechanics ASME, Vol. 15,1948, pp. 226–233.

    Google Scholar 

  17. NAGTEGAAL, J.C. and DE JONG, J.E., Some aspects of non-isotropic workhardening in finite strain plasticity, Plasticity of Metals at Finite Strain: Theory, Computation and Experiment eds. Lee, E.H., and Mallett, R.L., Stanford University and Rensselaer Polytechnic Institute, 1982, pp. 65–101.

    Google Scholar 

  18. LEE, E.H., MALLETT, R.L. and WERTHEIMER, T.B., Stress analysis for anisostropic hardening in finite-deformation plasticity, Journal of Applied Mechanics ASME, Vol. 50, 1983, pp. 554–560.

    Article  ADS  MATH  Google Scholar 

  19. ONAT, E.T. and DRUCKER, D.C., Inelastic instability and incremental theories of plasticity, Journal of the Aeronautical Sciences, Vol. 20, 1953, pp. 181–186.

    MathSciNet  Google Scholar 

  20. DRUCKER, D.C., Appropriate simple idealizations for finite plasticity, Plasticity Today: Modelling Methods, and Applications, eds. Sawczuk, A. and Bianchi, G., Elsevier, 1985, pp. 47–59.

    Google Scholar 

  21. PRAGER, W., The theory of plasticity - a survey of recent achievements, Proc. Inst. Mechanical Engineers, Vol 169, 1955, pp. 41–57.

    Article  MathSciNet  Google Scholar 

  22. SHIELD, R.T. and ZIEGLER, H., On Prager’s hardening rule, ZAMP, Vol. 9a, 1958, pp. 260–276.

    Article  MathSciNet  ADS  Google Scholar 

  23. ZIEGLER, H., An Introduction to Thermomechanics, 2nd Ed. North Holland, 1983.

    MATH  Google Scholar 

  24. PALGEN, L. and DRUCKER, D.C., On stress-strain relations suitable for cyclic and other loading, Journal of Applied Mechanics ASME, Vol. 48, 1981, pp. 479–485.

    Article  ADS  MATH  Google Scholar 

  25. RABOTNOV, Y.N., Creep Problems in Structural Members, North Holland Press, 1969.

    MATH  Google Scholar 

  26. KACHANOV, L.M., Time of the rupture process under creep conditions, Izv. Akad. Nauk. USSR, Otd. Tekh, Nauk, Vol. 8, 1958, pp. 26–31.

    Google Scholar 

  27. DRUCKER, D.C., Some classes of inelastic materials-related problems basic to future technologies, Nuclear Engineering and Design, Vol. 57, 1980, pp. 309–322.

    Article  Google Scholar 

  28. DRUCKER, D.C., Material response and continuum relations: or from microscales to macroscales, Journal of Engineering Materials and Technology, Trans. ASME, Vol. 106, 1984, pp. 286–289.

    Article  Google Scholar 

  29. ASARO, R.J., Micromechanics of crystals and polycrystals, Advances in Applied Mechanics, Vol. 23, Academic Press, 1983, pp. 1–115.

    Google Scholar 

  30. DRUCKER,D.C., From limited experimental information to appropriately idealized stress-strain relations, Mechanics of Engineering Materials, eds. Desai, C.S. and Gallagher, R.H., John Wiley & Sons Ltd., 1984, pp. 231–251.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Drucker, D.C. (1990). Past and possible future directions in plasticity. In: Sih, G.C., Ishlinsky, A.J., Mileiko, S.T. (eds) Plasticity and failure behavior of solids. Fatigue and Fracture, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1866-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1866-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7332-5

  • Online ISBN: 978-94-009-1866-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics