Skip to main content

The use of a Sesbania rostrata microcosm for studying gene transfer among microorganisms

  • Chapter
Bacterial Genetics in Natural Environments
  • 129 Accesses

Abstract

In the past decades, bacteria have frequently been introduced into the soil for commercial reasons such as pest control, pollution abatement (e.g., degradation of xenobiotics) and frost protection of crops. Furthermore successes in crop production with N2-fixing bacteria have been reported.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson J A. Production and quality control of legume inoculants. In: Bergersen FJ ed. Methods for evaluating biological nitrogen fixation. Chichester: John Wiley & Sons Ltd., 1980: 489–533.

    Google Scholar 

  2. Swift MJ. Microbial succession during the decay of organic matter. In: Burns RG, Slater JH, eds. Experimental microbial ecology. Oxford: Black- well, 1982: 164–177.

    Google Scholar 

  3. Roszak DB, Colwell RP. Survival strategies of bacteria in the natural environment. Annu Rev Microbiol 1987; 51: 365–379.

    CAS  Google Scholar 

  4. Stotzky G, Babich H. Survival of, and genetic transfer by, genetically engineered bacteria in natural environments. Adv Appl Microbiol 1986; 31: 93–138.

    Article  PubMed  CAS  Google Scholar 

  5. Elliot ET, Hunt HW, Walter DE, Moore JC. Microcosms, mesocosms and ecosystems: linking the laboratory to the field. In: Megusar F, Ganter M, eds. Perspectives in microbial ecology. Proceedings of the Fourth International Symposium on Microbial Ecology, Ljubljana. Ljubljana: Slovene Society for Microbiology, 1986: 472–480.

    Google Scholar 

  6. Van Elsas JD, Govaert JM, van Veen JA. Transfer of plasmid pFT30 between Bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biol Biochem 1987; 19: 639–647.

    Article  Google Scholar 

  7. Van Elsas JD, Postma J, Govaert JM, van Veen JA. The dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil as determined by immunofluorescence and selective plating techniques. FEMS Microbiol Ecol 1983; 53: 251–260.

    Google Scholar 

  8. Thomas CM, Smith CA. Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 1987; 41: 77–101.

    Article  PubMed  CAS  Google Scholar 

  9. Villaroel R, Hedges RW, Maenhaut R, et al Heteroduplex analysis of P-plasmid evolution: the role of insertion and deletion of transposable elements. Mol Gen Genet 1983; 189: 390–399.

    Article  Google Scholar 

  10. Anderson T-H, Domsch KH. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fert Soils 1985; 1: 81–89.

    Article  CAS  Google Scholar 

  11. Dreyfus B, Dommergues YR. Nitrogen-fixing nodules induced by Rhizobium on stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 1981; 10: 313–317.

    Article  CAS  Google Scholar 

  12. Vincent JM. A manual of the practical study of root-nodule bacteria. International Biological Programme Handbook. Oxford, Blackwell Scientific Publications, Ltd, 1970: 73–97.

    Google Scholar 

  13. Kado CI, Liu S-T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 1981; 145: 1365–1373.

    PubMed  CAS  Google Scholar 

  14. Trevors JT, Starodub ME. R-plasmid transfer in non-sterile agricultural soil. Sys Appl Microbiol 1987; 9: 312–315.

    CAS  Google Scholar 

  15. Steffan RJ, Atlas RM. DNA amplification to enhance the detection of genetically engineered bacteria in environmental samples. Appl Environ 1988; 54: 1–25.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Schneidereit, H., Schmidt, F.R.J. (1990). The use of a Sesbania rostrata microcosm for studying gene transfer among microorganisms. In: Fry, J.C., Day, M.J. (eds) Bacterial Genetics in Natural Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1834-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1834-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7318-9

  • Online ISBN: 978-94-009-1834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics