Skip to main content

The potential for gene exchange between rhizosphere bacteria

  • Chapter
Bacterial Genetics in Natural Environments

Abstract

The soil as such provides little available carbon and energy to microorganisms and therefore heterotrophic microbial activity in soil is dependent on carbon and energy inputs from the plant. The primary production is therefore from photosynthesis but up to 40% or even more of the plant’s total photosynthate can be released by roots in the form of exudates, lysates, mucilage, sloughed-off cells (including root cap cells) and respiratory C02.1–3 Such carbon flow has been investigated by growing plants exclusively on a source of uniformly-labelled 14CO2 in a sealed plant growth chamber, with the roots sealed in an aerated pot. Because the rhizosphere organisms rapidly utilize the substrates, much of the carbon appears as CO2 which can be trapped from the gas effluent from the pot. As the roots age and senesce, the whole root system becomes available for microbial degradation, as do the residues of the shoot tissue eventually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whipps JM, Lynch JM. Energy losses by the plant in rhizodeposition. Annu Proc Phytochem Soc Eur 1985; 26: 59–71.

    Google Scholar 

  2. Whipps JM. Carbon flow. In: Lynch JM, ed. The rhizosphere. Chichester: Wiley, 1990: in press.

    Google Scholar 

  3. Lynch JM, Whipps JM. Substrate flow in the rhizosphere. Plant Soil 1990; in press.

    Google Scholar 

  4. Bazin MJ, Markham P, Scott E, Lynch JM. Population dynamics and rhizosphere interactions. In: Lynch JM, ed. The rhizosphere. Chichester: Wiley 1990: in press.

    Google Scholar 

  5. Kleeberger A, Castorph H, Klingmüller W. The rhizosphere microflora of wheat and barley with special reference to Gram-negative bacteria. Arch Microbiol 1983; 136: 306–311.

    Article  Google Scholar 

  6. Schell J. Crown gall: transfer of bacterial DNA to plants via the Ti-plasmid. In: Hall TC, Davies JW, eds. Nucleic acids in plants. Boca Raton, Florida, USA: CRC Press 1979: 195–210.

    Google Scholar 

  7. Hedges RW, Messens E. Genetic aspects of rhizosphere interactions. In: Lynch JM, ed. The rhizosphere. Chichester: Wiley 1990; in press.

    Google Scholar 

  8. Thiry G, Thiry M, Thiry-Braipson J, Faelen M, Mergaey M, Ledoux L. Function of extra chromosomal DNA in the epiphytic bacterium Erwinia uredovora. In: Helsink DR, Cohen SN, Clewell DB, Jackson PA, Hallaen- der A. eds. Plasmids in bacteria. London: Plenum Press 1984: 911.

    Google Scholar 

  9. Leemans J, Inze D, Villarroel R, Engle G, Hernalsteans JP, De Block M, Van Montagu M. Plasmid mobilization as a test for in vivo genetic engineering. In: Levy GB, Clowes RC, Koenig EL, eds. Molecular biology and ecology of plasmids. New York: Plenum Press 1981: 401–409.

    Google Scholar 

  10. McDonnell RW, Sweeney HM, Cohen S. Conjugational transfer of gentamycin resistance plasmids intra- and interspecifically in Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 1983; 23: 151–160.

    PubMed  CAS  Google Scholar 

  11. Sussman M, Collins CH, Skinner FA, Stewart-Tull DE, eds. The release of genetically-engineered micro-organisms. London: Academic Press, 1988.

    Google Scholar 

  12. Fredrickson JK, Seidler RJ. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material. Report PNL-6828 UC-11, Pacific Northwest Laboratory of the Battelle Memorial Institute, 1989.

    Google Scholar 

  13. Van Voris P. Standard guide for conducting a terrestrial soil-core microcosm test. Standard E-1197. In: Annual Book of ASTM Standards, Vol. 11. 04. American Society for Testing Standards, Philadelphia, 1985: 743–755.

    Google Scholar 

  14. Knudsen GR, Walter MV, Porteous LA, Prince VJ, Armstrong JL, Seidler RJ. Predictive model of conjugative plasmid transfer in the rhizosphere and phyllosphere. Appi Environ Microbiol 1988; 54: 343–347.

    CAS  Google Scholar 

  15. Stotzky G, Babich H. Survival of, and genetic transfer by, genetically engineered bacteria in natural environments. Adv Appi Microbiol 1986; 31: 93–138.

    Article  CAS  Google Scholar 

  16. Kerr A, Tate ME. Agrocins and biological control of crown gall. Microbiol Sci 1984; 1: 1–4.

    PubMed  CAS  Google Scholar 

  17. Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A. Construction of a Tra- deletion mutant of pAgK84 to safeguard biological control of crown gall. Mol Gen Genet 1988; 212: 207–214.

    Article  CAS  Google Scholar 

  18. Broughton WJ, Samrey U, Stanley J. Ecological genetics of Rhizobium meliloti: symbiotic plasmid transfer is the Medicago sativa rhizosphere. FEMS Microbiol Letts 1987; 40: 251–255.

    Article  CAS  Google Scholar 

  19. Van Elsas JD, Trevors JT, Starodub M-E. Plasmid transfer in soil and rhizosphere. In: Klingmüller W, ed. Risk assessment for deliberate releases. Berlin: Springer-Verlag 1988; 89–99.

    Google Scholar 

  20. Dijkstra AF, Govaert JM, Schölten GHN, Van Elsas JD. A soil chamber for studying the bacterial distribution in the vicinity of roots. Soil Biol Biochem 1987; 19: 351–352.

    Article  Google Scholar 

  21. Van Elsas JD, Govaert JM, Van Veen J A. Transfer of plasmid pFT30 between bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biol Biochem 1987; 19: 639–647.

    Article  Google Scholar 

  22. Van Elsas JD, Trevors JT, Starodub M-E. Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol Ecol 1988; 53: 299–306.

    Article  Google Scholar 

  23. Elliott LF, Lynch JM. Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L). Soil Biol Biochem 1984; 16: 69–71.

    Article  Google Scholar 

  24. Elliott LF, Lynch JM. Plant growth-inhibitory pseudomonads colonizing winter wheat (Triticum aestivum L) roots. Plant Soil 1985; 84: 57–65.

    Article  Google Scholar 

  25. Fredrickson JK, Elliott LF. Effects on winter wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 1985; 83: 399–409.

    Article  Google Scholar 

  26. Bolton H, Elliott LF, Gurusiddaiah S, Fredrickson JF. Characterization of a toxin produced by a rhizobacterial Pseudomonas sp that inhibits root growth. Plant Soil 1989; 114: 279–287.

    Article  CAS  Google Scholar 

  27. Neilson AH, Sparell L. Acetylene reduction (nitrogen fixation) by Entero-bacteriacae isolated from paper mill process waters. Appl Environ Microbiol 1976; 32: 197–205.

    PubMed  CAS  Google Scholar 

  28. Nelson EB, Chao W-L, Norton JM, Nash GT, Harman GE. Attachment of Enterobacter cloacae to Pythium ultium hyphae: possible role in the biological control of Pythium pre-emergence damping-off. Phytopathology 1986; 76: 327–335.

    Article  Google Scholar 

  29. Chapman SJ, Lynch JM. Some properties of polysaccharides of microorganisms from degraded straw. Enzyme Microb Technol 1985; 7: 161–163.

    Article  CAS  Google Scholar 

  30. Lappin-Scott HM, Cusack F, Macleod A, Costerton JW. Starvation and nutrient resuscitation of Klebsiella pneumoniae isolated from oil well waters. J Appl Bacteriol 1988; 64: 541–549.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Lynch, J.M. (1990). The potential for gene exchange between rhizosphere bacteria. In: Fry, J.C., Day, M.J. (eds) Bacterial Genetics in Natural Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1834-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1834-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7318-9

  • Online ISBN: 978-94-009-1834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics