Skip to main content

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 188))

  • 313 Accesses

Abstract

Schrödinger has often been reproached for having formulated (or reformulated) a wave-interpretation of quantum mechanics in the 1950’s, without even trying to ground it in some calculations. People usually regret that he limited himself to generalities or philosophical considerations. L. Wessels notices that “(...)unlike de Broglie, who at about that same time returned to the task of constructing a precise mathematical theory based on his own pilot wave interpretation, Schrödinger did not attempt to work out his new wave picture in detail. Where in 1925 such an idea had been the starting point the creation of a new physical theory, it now gave rise only to philosophical polemic”1. However, there is an obvious difference between de Broglie’s and Schrödinger’s positions, which should not have escaped the commentators. De Broglie was bound to formulate new mathematical laws, in order to rule the classical-like entities of the “sub-quantal” realm which were supposed by him to be incompletely (only statistically) described by quantum mechanics. By contrast, Schrödinger strongly rejected the idea that quantum mechanics is incomplete in the sense advocated by Einstein and de Broglie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Wessels, “Schrödinger and the descriptive tradition”, in: R. Aris, H.T. Davis, and R.H. Stuewer (eds.), Springs of scientific creativity, op. cit. p. 265–269

    Google Scholar 

  2. W. Heisenberg, Physics and beyond, op. cit. chapter 5

    Google Scholar 

  3. E. Schrödinger, “Conceptual models in physics and their philosophical value”, in: Science, theory and man, op. cit.

    Google Scholar 

  4. ibid. p. 120

    Google Scholar 

  5. ibid. p. 121

    Google Scholar 

  6. For a criticism of the disturbance conception of measurements, see E. Schrödinger, “What is an elementary particle”, loc. cit. p. 111

    Google Scholar 

  7. E. Schrödinger, Science and Humanism, op. cit. p. 27

    Google Scholar 

  8. E. Schrödinger, “L’image actuelle de la matière” in: Gesammelte abhandlungen, op. cit., vol. 4, p. 507

    Google Scholar 

  9. ibid. p. 506

    Google Scholar 

  10. E. Schrödinger to H. Margenau, April 12, 1955, AHQP, microfilm 37, section 9

    Google Scholar 

  11. E. Schrödinger, Science and Humanism, op. cit. p. 19

    Google Scholar 

  12. See: L. Boltzmann, Theoretical physics and philosophical problems, (B. Mac Guinness, ed.), op. cit. p. 230–231.

    Google Scholar 

  13. E. Schrödinger to H. Margenau, April 12, 1955, AHQP, microfilm 37, section 9

    Google Scholar 

  14. See e.g. M. Born, “Physical reality”, loc. cit.

    Google Scholar 

  15. E. Schrödinger, Science and Humanism, op. cit. p. 17

    Google Scholar 

  16. ibid. p. 18

    Google Scholar 

  17. E. Schrödinger, “What is an elementary particle”, loc. cit. p. 116

    Google Scholar 

  18. E. Schrödinger, Science and Humanism, op. cit. p. 17

    Google Scholar 

  19. ibid. p. 27–28;

    Google Scholar 

  20. also in “What is an elementary particle?”, loc. cit. p. 115: “(…) in favourable circumstances, long strings of successively occupied states may be produced (…). Such a string gives the impression of an identifiable individual, just as in the case of any object in our daily surrounding”

    Google Scholar 

  21. E. Schrödinger, “L’image actuelle de la matière” in: Gesammelte abhandlungen, op. cit., vol. 4, p. 506

    Google Scholar 

  22. E. Schrödinger, July 1952 colloquium 1952, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 20). See chapter 6 for more details about Bohr’s and Schrödinger’s views on “complementarity”.

    Google Scholar 

  23. ibid.

    Google Scholar 

  24. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 82)

    Google Scholar 

  25. Schrödinger explicitly rejected the project of “framing ontologically” the elements of our physical pictures, if “ontologically” is taken in the metaphysical sense, see e.g. “Might perhaps energy be a merely statistical concept”, in: Gesammelte abhandlungen, op. cit., vol. 1, p. 508

    Google Scholar 

  26. W.V. Quine, The roots of reference, Open Court, 1974, p. 88

    Google Scholar 

  27. E. Schrödinger, “What is an elementary particle?” loc. cit. p. 111

    Google Scholar 

  28. E. Schrödinger, letter to N. Bohr, May 5, 1928, in: N. Bohr, Collected works, vol. 6, op. cit., p. 47

    Google Scholar 

  29. E. Schrödinger, “What is an elementary particle?” loc. cit. p. 115

    Google Scholar 

  30. H. Everett, “Theory of the universal wave function” in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit. p. 118

    Google Scholar 

  31. S. Saunders, “Time and quantum mechanics”, in: M. Bitbol & E. Ruhnau (eds.), Now, time and quantum mechanics, Editions Frontières, 1994

    Google Scholar 

  32. ibid.

    Google Scholar 

  33. ibid. p. 80

    Google Scholar 

  34. E. Schrödinger, “What is a law of nature?”, in: Science and the human temperament, op. cit.

    Google Scholar 

  35. E. Schrödinger, “Die Besonderheit des Weltbilds der Naturwissenschaft”, loc. cit.

    Google Scholar 

  36. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 80)

    Google Scholar 

  37. Unexpectedly, Born was not very far from this position either. A few sentences in his Waynflete lectures of 1948 could almost have been written by Schrödinger: “I personally like to regard a probability wave, even in 3N-dimensional space, as a real thing, certainly as more than a tool for mathematical calculations. For it has the character of an invariant of observation; that means it predicts the results of counting experiments, and we expect to find the same average numbers, the same mean deviations, etc., if we actually perform the experiment many times under the same experimental condition. Quite generally, how could we rely on probability predictions if by this notion we do not refer to something real and objective?”. M. Born, Natural philosophy of cause and chance, Oxford University Press, 1949, chap. IX

    Google Scholar 

  38. W. Heisenberg, Physics and philosophy, op. cit. p. 130

    Google Scholar 

  39. P. Heelan, Quantum mechanics and objectivity, Martinus Nijhoff, 1965, p. 150

    Google Scholar 

  40. E. Schrödinger, July 1952 colloquium, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 19)

    Google Scholar 

  41. E. Schrödinger, “The fundamental idea of wave mechanics” (Nobel lecture, 1933), in: Science and the human temperament, op. cit.

    Google Scholar 

  42. E. Schrödinger, “Are there quantum jumps?” loc. cit. p. 242

    Google Scholar 

  43. E. Schrödinger to B. Bertotti, July 30, 1958, in: B. Bertotti & U. Curi (eds.), Erwin Schrödinger scienziato e filosofo, op. cit. p. 156

    Google Scholar 

  44. E. Schrödinger, “The present situation in quantum mechanics”, in: J.A. Wheeler & W.H. Zurek (eds.), Quantum theory and measurement, op. cit. p. 162

    Google Scholar 

  45. E. Schrödinger, “Are there quantum jumps?” loc. cit. p. 242

    Google Scholar 

  46. Y. Aharonov, J. Anandan, & L. Vaidman, “Meaning of the wave function”, Phys. Rev. A47, 4616–4626, 1993;

    Google Scholar 

  47. see also M. Dickson, “An empirical reply to empiricism: protective measurement opens the door for quantum realism”, Philosophy of science, 62, 122–140, 1995

    Article  Google Scholar 

  48. See e.g. E. Husserl (1913), Ideas (general introduction to pure phenomenology), Engl. Tr. G. Allen & Unwin, 1931, §136: “We have yet to note that the expression ‘fulfilment’ (Erfüllung) has still another ambiguity which lies in a quite other direction: at one time it is ‘fulfilment of intention’, as a character which the actual thesis takes on through the special mode of meaning; at another it is precisely the peculiarity of this mode itself or the peculiar property of the meaning in question, to conceal ‘rich resources’ which motivate in accordance with reason”. Sometimes ‘Erfüllung’ is also translated ‘filling-out’. See also chapter 5.

    Google Scholar 

  49. See P. Heelan, Quantum mechanics and objectivity, op. cit. p. 118.

    Google Scholar 

  50. E. Schrödinger, “L’image actuelle de la matière” in: Gesammelte abhandlungen, op. cit., vol. 4

    Google Scholar 

  51. E. Schrödinger, July 1952 colloquium (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit.1913 p. 32)

    Google Scholar 

  52. ibid. p. 32

    Google Scholar 

  53. E. Schrödinger, “What is an elementary particle?” loc. cit.;

    Google Scholar 

  54. see also “The nature of the elementary particles”, in: Notes for seminar 1949, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 102–103)

    Google Scholar 

  55. E. Schrödinger, “What is an elementary particle?” loc. cit.

    Google Scholar 

  56. W. Heisenberg, “The physical content of quantum kinematics and dynamics” (1927), in: J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit. p. 74: “Thus, every position determination reduces the wavepacket back to its original extension λ”

    Google Scholar 

  57. E. Schrödinger, “The meaning of wave mechanics”, in: A. George (ed.), Louis de Broglie physicien et penseur, op. cit.,p. 18

    Google Scholar 

  58. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 83)

    Google Scholar 

  59. ibid.

    Google Scholar 

  60. ibid. p. 82

    Google Scholar 

  61. Or the “interpretation”, in the restricted sense Schrödinger ascribed to this word.

    Google Scholar 

  62. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 53)

    Google Scholar 

  63. About this equivalence see B. d’Espagnat, Conceptual foundations of quantum mechanics, op. cit. p. 30;

    Google Scholar 

  64. B. d’Espagnat, Veiled reality, Addison-Wesley, 1995

    Google Scholar 

  65. ibid.

    Google Scholar 

  66. E. Schrödinger, “The present situation in quantum mechanics” in: J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit. p. 158

    Google Scholar 

  67. B. C. Van Fraassen, Quantum mechanics, an empiricist view, Oxford University Press, 1991, p. 252

    Google Scholar 

  68. E. Schrödinger, E. Schrödinger, “The present situation in quantum mechanics” in: J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit. §8;

    Google Scholar 

  69. and also Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit.)

    Google Scholar 

  70. E. Schrödinger, “The present situation in quantum mechanics” in: J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit. p. 162

    Google Scholar 

  71. G. Ryle, The concept of Mind, Hutchinson, 1949

    Google Scholar 

  72. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 39)

    Google Scholar 

  73. ibid. p. 80

    Google Scholar 

  74. ibid. A similar remark was made recently by S. Y. Auyang, How is quantum field theory possible?, Oxford University Press, 1995, p. 115: “Consider Heisenberg’s suggestion that the wavefunction represents not a microscopic system but our knowledge of it. The proposition sounds both indisputable and absurd. (…) All sciences are our knowledge, but the content of the sciences are features of the objective world”.

    Google Scholar 

  75. D. Hume, A Treatise of Human Nature, Book I, part III, section XIV, (ed. L.A. Selby-Bigge), Oxford University Press, 1960;

    Google Scholar 

  76. see a discussion in: S. Blackburn, Essays in Quasi-Realism, op. cit. p. 55.

    Google Scholar 

  77. E. Schrödinger, “The meaning of wave mechanics”, in: A. George (ed.), Louis de Broglie physicien et penseur, op. cit. p. 26

    Google Scholar 

  78. E. Schrödinger, Short notes for Dublin seminar, May 4, 1949;

    Google Scholar 

  79. quoted in: E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 98

    Google Scholar 

  80. E. Schrödinger, “The present situation in quantum mechanics” in: J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit. p. 162

    Google Scholar 

  81. E. Schrödinger to W.Wien, February 22, 1926, quoted and translated by L. Wessels, Schrödinger’s interpretations of wave mechanics, op. cit. p. 167

    Google Scholar 

  82. E. Schrödinger “The exchange of energy according to wave mechanics”, in: Collected papers on wave mechanics, op. cit.,

    Google Scholar 

  83. E. Schrödinger, “Probability relations between separated systems”, Proc. Camb. Phil. Soc., 32, 1936, p. 451;

    Article  Google Scholar 

  84. E. Schrödinger, “Are there quantum jumps?”; loc. cit.;

    Google Scholar 

  85. July 1952 colloquium, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit.). In the two last cases, and as in the original 1927 paper, the idea that a quantum jump of energy Ekl=hνk-hνl happens in the receiver (possibly belonging to a measurement apparatus) in order to compensate for a quantum jump of equal energy in the emitter was replaced by a concept of resonance between two oscillators O and O’. The condition of resonance is: νk-vll’-vk’.

    Google Scholar 

  86. E. Schrödinger “The exchange of energy according to wave mechanics”, in: Collected papers on wave mechanics, op. cit. p. 140

    Google Scholar 

  87. ibid. p. 141

    Google Scholar 

  88. N. Bohr, “The quantum postulate and the recent development of atomic theory”, Nature, 121, 580–590, 1928,

    Article  Google Scholar 

  89. J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit.

    Google Scholar 

  90. W. Heisenberg, The physical principles of the quantum theory, op. cit. p. 20

    Google Scholar 

  91. N. Bohr, “The quantum postulate and the recent development of atomic theory”, loc. cit.

    Google Scholar 

  92. E. Schrödinger, “Indeterminism in physics”, in: Science and the human temperament, op. cit. p. 43–44

    Google Scholar 

  93. N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 48, 696–702, 1935,

    Article  Google Scholar 

  94. J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit.;

    Google Scholar 

  95. see an interesting comment in: J. Faye, Niels Bohr, his heritage and legacy, Kluwer, 1991, p. 205

    Book  Google Scholar 

  96. E. Schrödinger, “Discussion of probability relations between separated systems”, (1935) loc. cit.

    Google Scholar 

  97. E. Schrödinger, “Indeterminism in physics”, in: Science and the human temperament, op. cit. p. 44

    Google Scholar 

  98. E. Schrödinger, “Discussion of probability relations between separated systems”, (1935) loc. cit.

    Google Scholar 

  99. E. Schrödinger, “Probability relations between separated systems”, (1936) loc. cit.

    Google Scholar 

  100. B. d’Espagnat, Conceptual foundations of quantum mechanics, op. cit., p. 58

    Google Scholar 

  101. E. Schrödinger, “The present situation in quantum mechanics” in: J.A. Wheeler and W.H. Zurek (eds.), Quantum theory and measurement, op. cit. p. 161

    Google Scholar 

  102. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 53)

    Google Scholar 

  103. H. Margenau, “Measurements in quantum mechanics”, Annals of physics, 23, 469–485, 1963

    Article  Google Scholar 

  104. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 83);

    Google Scholar 

  105. see also E. Schrödinger, “The meaning of wave mechanics”, in: A. George (ed.), Louis de Broglie physicien et penseur, op. cit., p. 18: “I know only of one timid attempt (J. Von Neumann, in his well-known book) to put this ‘change by measurement’ to the door of a perturbing operator introduced by the measurement, and thus to have it also controlled solely by the wave equation”

    Google Scholar 

  106. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 83)

    Google Scholar 

  107. ibid.

    Google Scholar 

  108. E. Schrödinger, July 1952 colloquium, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 35)

    Google Scholar 

  109. E. Schrödinger, “The meaning of wave mechanics”, in: A. George (ed.), Louis de Broglie physicien et penseur, Albin Michel, 1953, p. 26

    Google Scholar 

  110. This attitude evokes the idea of a Gödelian incompleteness of quantum theory, as H. Primas tends to think: “The proposition ‘the cat is in a definite biological state’ is endophysically undecidable”. H. Primas, “A propos de la mécanique quantique des systèmes macroscopiques”, in: M. Bitbol and O. Darrigol (eds.), Erwin Schrödinger, Philosophy and the birth of quantum mechanics, Editions Frontières, 1993, p. 401

    Google Scholar 

  111. E. Schrödinger, “Quelques remarques au sujet des bases de la connaissance scientifique”, Scientia, 57, 181–191, 1935;

    Google Scholar 

  112. see a comment in: F. Nef, “A propos d’une controverse entre Carnap et Schrödinger”, in: M. Bitbol and O. Darrigol, Erwin Schrödinger, Philosophy and the birth of quantum mechanics, op. cit.

    Google Scholar 

  113. Also: M. Bitbol “L’alter-ego et les sciences de la nature;Autour d’un débat entre Schrödinger et Carnap” in: A. Soulez & J. Sebestik (eds), Science et philosophie en France et en Autriche, 1880–1930, To be published.

    Google Scholar 

  114. E. Schrödinger, Nature and the Greeks, op. cit., chapter 1

    Google Scholar 

  115. E. Schrödinger, Transformation and interpretation in quantum mechanics, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 70)

    Google Scholar 

  116. E. Schrödinger, “The problem of matter in quantum mechanics”, Notes for seminar 1949, (E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 98)

    Google Scholar 

  117. H. Everett, “Theory of the universal wave function” in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, Princeton University Press, 1973 p. 109

    Google Scholar 

  118. ibid. p. 115

    Google Scholar 

  119. ibid.

    Google Scholar 

  120. ibid.

    Google Scholar 

  121. ibid.

    Google Scholar 

  122. ibid.

    Google Scholar 

  123. H. Everett, “Relative state formulation of quantum mechanics”, in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit., p. 146

    Google Scholar 

  124. H. Everett, “Relative state formulation of quantum mechanics”, in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit., p. 116

    Google Scholar 

  125. E. Schrödinger, July 1952 colloquium, in: E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 19–20

    Google Scholar 

  126. D. Deutsch, “Quantum theory as a universal physical theory”, Int. J. Theor. Phys., 24, 1–41, 1985

    Article  Google Scholar 

  127. E. Schrödinger, Transformation and interpretation in quantum mechanics, in: E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit. p. 50

    Google Scholar 

  128. E. Schrödinger, “Discussion of probability relations between separated systems”, loc. cit.

    Google Scholar 

  129. H. Everett, “Theory of the universal wave function” in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit. p. 118

    Google Scholar 

  130. S. Saunders, “Time and quantum mechanics”, in: M. Bitbol & E. Ruhnau (eds.), Now, time and quantum mechanics, Editions Frontières, 1994

    Google Scholar 

  131. ibid.

    Google Scholar 

  132. H. Everett, “Theory of the universal wave function” in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit. p. 111

    Google Scholar 

  133. ibid. p. 109

    Google Scholar 

  134. ibid p. 144

    Google Scholar 

  135. ibid. p. 117; see more comments in paragraph 6–7 of the present essay.

    Google Scholar 

  136. M. Bitbol, De l’intérieur du monde (in preparation);

    Google Scholar 

  137. M. Bitbol, “Quantum mechanics, facts, and presence”, in: M. Bitbol & E. Ruhnau (eds.), Now, time and quantum mechanics, Editions Frontières, 1994

    Google Scholar 

  138. E. Schrödinger, Science and humanism, op. cit., p. 41

    Google Scholar 

  139. B. Van Fraassen, Quantum mechanics, an empiricist view, op. cit. p. 204

    Google Scholar 

  140. M. Dickson, “What is preferred about the preferred basis?”, Found. Phys., 25, 423–440, 1995

    Article  Google Scholar 

  141. D. Dieks, “Modal interpretation of quantum mechanics, measurements, and macroscopic behavior”, Phys. Rev. A49, 2290–2300, 1994

    Google Scholar 

  142. E. Schmidt, “Zur Theorie der linearen und nicht linearen Integral Gleichungen (I)”, Math. Annalen, 63, 433–476, 1907

    Article  Google Scholar 

  143. D. Dieks, “Resolution of the measurement problem through decoherence of the quantum state”, Phys. Lett. A-142, 439–446, 1989

    Google Scholar 

  144. D. Deutsch, “Quantum theory as a universal physical theory”, loc. cit.

    Google Scholar 

  145. S. Foster & H. Brown, “On a recent attempt to define the interpretation basis in the many-worlds interpretation of quantum mechanics”, Int. J. Theor. Phys., 27, 1507–1531, 1988.

    Article  Google Scholar 

  146. S. Saunders, “Decoherence, Relative states, and Evolutionary adaptation”, Found. Phys. 23, 1553–1587, 1993

    Article  Google Scholar 

  147. J.P. Paz & W.H. Zurek, “Environment-induced decoherence, classicality, and consistency of quantum histories”, Phys. Rev. D48, 2728–2737, 1993

    Google Scholar 

  148. M. Gell-Mann & J.B. Hartle, “Classical equations for quantum systems”, Phys. Rev., D47, 3345–3382, 1993

    Google Scholar 

  149. R. Omnès, The interpretation of quantum mechanics, Princeton University Press, 1994

    Google Scholar 

  150. S. Saunders, “Decoherence, Relative states, and Evolutionary adaptation”, loc. cit.

    Article  Google Scholar 

  151. M. Lockwood, Mind, Brain, and the Quantum, B. Blackwell, 1989;

    Google Scholar 

  152. “‘Many-minds’ interpretations of quantum mechanics”, Brit. J. Philos. Sci. (forthcoming)

    Google Scholar 

  153. S. Saunders, “Decoherence, Relative states, and Evolutionary adaptation”, loc. cit.;

    Article  Google Scholar 

  154. S. Saunders, “Time and quantum mechanics”, in: M. Bitbol & E. Ruhnau (eds.), Now, time and quantum mechanics, op. cit.

    Google Scholar 

  155. H. Everett, “The theory of the universal wave function” in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit.1989 p. 47.

    Google Scholar 

  156. See also B.S. De Witt, “Many-universes interpretation of quantum mechanics” ibid. p. 157

    Google Scholar 

  157. H. Everett, “‘Relative state’ formulation of quantum mechanics”, in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit. p. 143–144

    Google Scholar 

  158. H. Everett, “The theory of the universal wave function”, in: B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit. p. 54.

    Google Scholar 

  159. E. Schrödinger, “Discussion of probability relations between separated systems”, op. cit.

    Google Scholar 

  160. E. Schrödinger, Transformation and interpretation in quantum mechanics, in: E. Schrödinger, The interpretation of quantum mechanics (Dublin seminars 1949–1955 and other unpublished texts), op. cit.

    Google Scholar 

  161. ibid. p. 51

    Google Scholar 

  162. ibid. p. 70

    Google Scholar 

  163. M. Lockwood, “‘Many-minds’ interpretations of quantum mechanics”, loc. cit.

    Google Scholar 

  164. See D.Z. Albert & B. Loewer, “Interpreting the many-worlds interpretation”, Synthese, 77, 195–213, 1988;

    Article  Google Scholar 

  165. D. Z. Albert, Quantum mechanics and experience, Harvard University Press, 1993

    Google Scholar 

  166. M. Lockwood, “‘Many-minds’ interpretations of quantum mechanics”, loc. cit.

    Google Scholar 

  167. E. Schrödinger, Mind and Matter, op. cit. p. 128

    Google Scholar 

  168. ibid. p. 129

    Google Scholar 

  169. E. Schrödinger, “Der Geist der Naturwissenschaft”, Eranos Jahrbuch, 14, 491–520, 1946

    Google Scholar 

  170. E. Schrödinger, Mind and Matter, op. cit. p. 128

    Google Scholar 

  171. E. Schrödinger, Mind and Matter, op. cit. p. 129

    Google Scholar 

  172. M. Bitbol, “Perspectival realism and quantum mechanics”, in: P. Lahti and P. Mittelstaedt, (eds.), Proceedings of the symposium on the foundations of modern physics 1990, World Scientific, 1991

    Google Scholar 

  173. E. Schrödinger, “Der Geist der Naturwissenschaft”, loc. cit.

    Google Scholar 

  174. E. Schrödinger, Mind and Matter, op. cit. p. 145

    Google Scholar 

  175. M. Bitbol, “Now and Time”, in: M. Bitbol & E. Ruhnau (eds.), Now, Time and Quantum mechanics, op. cit. See further developments in chapter 6 of the present essay.

    Google Scholar 

  176. E. J. Squires, in: M. Cini and J.M. Lévy-Leblond (eds.), Quantum theory without reduction, Adam Hilger, 1990

    Google Scholar 

  177. E.J. Squires, “How to test for Cartesian dualism by quantum experiments”, in: P. Lahti and P. Mittelstaedt, (eds.), Proceedings of the symposium on the foundations of modern physics 1990, op. cit.

    Google Scholar 

  178. See D.Z. Albert & B. Loewer, “Interpreting the many-worlds interpretation”, loc. cit.;

    Article  Google Scholar 

  179. M. Lockwood, “‘Many-minds’ interpretations of quantum mechanics”, loc. cit.

    Google Scholar 

  180. D. Deutsch, “Quantum theory as a universal physical theory”, loc. cit.

    Google Scholar 

  181. M. Lockwood, “‘Many-minds’ interpretations of quantum mechanics”, loc. cit.

    Google Scholar 

  182. M. Bitbol, De l’intérieur du monde op. cit.

    Google Scholar 

  183. H. Everett, “Relative state formulation of quantum mechanics”, loc. cit.

    Google Scholar 

  184. B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit. p. 149

    Google Scholar 

  185. E. Schrödinger, “Might perhaps energy be a merely statistical concept?” in: E. Schrödinger, Gesammelte abhandlungen, op. cit. vol. 1, p. 510

    Google Scholar 

  186. H. Everett, “Relative state formulation of quantum mechanics”, loc. cit.

    Google Scholar 

  187. B.S. De Witt and N. Graham, The many-worlds interpretation of quantum mechanics, op. cit. p. 149

    Google Scholar 

  188. S. Kochen, “A new interpretation of quantum mechanics”, in: P. Lahti & P. Mittelstaedt (eds.), Symposium on the foundations of modern physics, World Scientific, 1985;

    Google Scholar 

  189. D. Dieks, “Modal interpretation of quantum mechanics, measurements, and macroscopic behavior”, Phys. Rev. A49, 2290–2300, 1994;

    Google Scholar 

  190. R. Healey, The philosophy of quantum mechanics, Cambridge University Press, 1989;

    Google Scholar 

  191. B. Van Fraassen, Quantum mechanics, an empiricist view, Oxford University Press, 1991

    Google Scholar 

  192. H. Wirnmel, Quantum physics and observed reality, World Scientific, 1992

    Google Scholar 

  193. B. Van Fraassen, Quantum mechanics, an empiricist view, op. cit. p. 276

    Google Scholar 

  194. ibid. p. 279

    Google Scholar 

  195. ibid. p. 277

    Google Scholar 

  196. H. Wimmel, Quantum physics and observed reality, op. cit. p. 15

    Google Scholar 

  197. ibid. p. 21

    Google Scholar 

  198. ibid. p. 25

    Google Scholar 

  199. ibid. p. 31

    Google Scholar 

  200. ibid. p. 41

    Google Scholar 

  201. N.F. Mott, “The wave mechanics of α-ray tracks”, Proc. Roy. Soc. Lond., A126, 79–84, 1929;

    Google Scholar 

  202. A.B. Pippard, “The interpretation of quantum mechanics”, Eur. J. Phys., 43–48, 1986

    Google Scholar 

  203. H. Wimmel, Quantum physics and observed reality, op. cit. p. 46

    Google Scholar 

  204. ibid. p. 68

    Google Scholar 

  205. ibid. p. 62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bitbol, M. (1996). Towards a New Ontology. In: Schrödinger’s Philosophy of Quantum Mechanics. Boston Studies in the Philosophy of Science, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1772-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1772-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7291-5

  • Online ISBN: 978-94-009-1772-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics