Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 30))

Abstract

Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures (1–4). Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine (4,5). Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides (4–7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srivastava SC (ed): Radiolabeled Monoclonal Antibodies for Imaging and Therapy, New York, Plenum Press, 1988, 876 pp

    Google Scholar 

  2. Britton KE, Mather S J, Granowska M: Radiolabelled monoclonal antibodies in oncology III. Radioimmunotherapy. Nucl Med Commun 12:333–347, 1991

    PubMed  CAS  Google Scholar 

  3. Larson SM, Digvi CR, Scott A, et al: Current status of radioimmunotherapy. Nucl Med Biol 21:785–792, 1994

    Article  PubMed  CAS  Google Scholar 

  4. Mausner LF, Srivastava SC: Selection of radionuclides for radioimmunotherapy. Med Phys 20:503–509, 1993

    Article  PubMed  CAS  Google Scholar 

  5. Srivastava SC, Mausner LF: Production and supply of radioradionuclides with high-energy particle accelerators: Current status and future directions: in: Proc 21st Japan Conf Radiat and Radionuclides, Feb. 2–4, 1994, Japan Atomic Industrial Forum, B-550, pp 1–11

    Google Scholar 

  6. Volkert WA, Goeckler WF, Ehrhardt GJ, et al: Therapeutic radionuclides: production and decay property considerations. J Nucl Med 32:174–185, 1991

    PubMed  CAS  Google Scholar 

  7. O’Donoghue JA, Bardies M, Wheldon TE: Relationships between tumor size and curability for uniformly targeted therapy with beta emitting radionuclides. J Nucl Med 36:1902–1909, 1995

    PubMed  Google Scholar 

  8. Adelstein S J, Kassis AI: Radiobiologic implications of the microscopic distribution of energy from radionuclides. Nucl Med Biol 14:165–169, 1987

    CAS  Google Scholar 

  9. Jungerman JA, Yu Kin-Hung P, Zanelli CI: Radiation absorbed dose estimates at the cellular level for some electron emitting radionuclides for radioimmunotherapy. Int J Appl Radiat Isot 35:883–888, 1984

    Article  PubMed  CAS  Google Scholar 

  10. Humm JL: Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 27:1490–1497, 1986

    PubMed  CAS  Google Scholar 

  11. Wessels BW, Rogus RD: Radionuclide selection and model absorbed dose calculations for radiolabeled tumor-associated antibodies. Med Phys 11:638–645, 1984

    Article  PubMed  CAS  Google Scholar 

  12. Griffith MH, Yorke ED, Wessels BW, et al: Direct dose confirmation of quantitative autoradiography with micro-TLD measurements for radioimmunotherapy. J Nucl Med 10:1795–1809, 1988

    Google Scholar 

  13. Srivastava SC: Criteria for the selection of radionuclides for targeting nuclear antigens for cancer radioimmunotherapy. Cancer Biother Radiopharm 11: 43–50, 1996

    Article  PubMed  CAS  Google Scholar 

  14. Srivastava SC, Mease RC: Progress in research on ligands, nuclides, and techniques for labeling monoclonal antibodies. Nucl Med Biol 18:589–603, 1991

    CAS  Google Scholar 

  15. DeNardo GL, DeNardo S J, Meares CF, et al: Pilot therapy of lymphoma with fractionated Cu-67-BAT Lym-1. J Nucl Med 34:93P, 1993

    Google Scholar 

  16. DasGupta AK, Mausner LF, Srivastava SC: A new separation procedure for Cu from proton irradiated Zn. Int J Appl Radiat Isot 42:371–376, 1991

    Article  CAS  Google Scholar 

  17. Mausner LF, Kolsky KL, Mease RC, et al: Production and evaluation of Sc-47 for radioimmunotherapy. J Labelled Compds Radiopharm 32:388–390, 1993

    Google Scholar 

  18. Ehrhardt G, Ketring AR, Turpin TA, et al: An improved tungsten-188/rhenium-188 generator for radiotherapeutic applications. J Nucl Med 28:656, 1987

    Google Scholar 

  19. Carasquillo JA, Kramer B, Fleisher T, et al: In-111 versus Y-90 T101 biodistribution in patients with hematopoietic malignancies. J Nucl Med 32:970, 1991 (abstr)

    Google Scholar 

  20. Breitz H, Ratliff B, Schroff R, et al: Phase I studies of 186-Re whole MoAb and F(ab’) 2 fragment for radioimmunotherapy in solid tumors. J Nucl Med 31:724–725, 1990

    Google Scholar 

  21. Roselli M, Schlom J, Gansow OA, et al: Comparative biodistribution of yttrium- and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts. J Nucl Med 30:672–689, 1989

    PubMed  CAS  Google Scholar 

  22. Adams GP, DeNardo SJ, Deshpande SV, et al: Dual isotope pharmacokinetics of an anti-lymphoma antibody (LYM-1) with a new bifunctional chelating agent. J Nucl Med 31:823, 1990

    Google Scholar 

  23. Mausner LF, Joshi V, Kolsky KL, et al: Evaluation of chelating agents for radioimmunotherapy with scandium-47. J Nucl Med 36:104P, 1995 (abstr)

    Google Scholar 

  24. Srivastava SC, Mease RC, Meinken GE, et al: Reduction in non-specific uptake of indium-111 from using semi-rigid cyclohexyl EDTA immunoconjugates. J Labelled Compds Radiopharm 35:303, 1994

    Google Scholar 

  25. Moi MK, Meares CF, McCall MJ, et al: Copper chelates as probes of biological systems: Stable copper complexes with a macrocyclic bifunctional chelating agent Anal Biochem 148:249, 1985

    Article  PubMed  CAS  Google Scholar 

  26. Macke H, Ruser G, Koch P, et al: New bifunctional chelators for antibody labeling with metallic radionuclides. J Labelled Compds Radiopharm 30:318, 1991

    Google Scholar 

  27. Boniface GR, Izard ME, Walken KZ, et al: Labeling of monoclonal antibodies with samarium-153 for combined radioimmunoscintigraphy and radioimmunotherapy. J Nucl Med 30:683–691, 1989

    PubMed  CAS  Google Scholar 

  28. Srivastava SC, Mausner LF, Mease RC, et al: Development and evaluation of 67-Cu and 153-Sm labeled conjugates for tumor radioimmunotherapy. Int J Radiopharmcognosy, 33:92–101, 1995

    Article  CAS  Google Scholar 

  29. McEwan AJB: Radiopharmaceuticals for palliative treatment of painful bone metastases. New Perspectives in Cancer Diagnosis and Management. 2:24, 1994

    Google Scholar 

  30. Silberstein EB, Elgazzar AH, Kapilivsky A: Phosphorus-32 radiopharmaceuticals for the treatment of painful osseous metastases. Semin Nucl Med 22:17–27, 1992

    Article  PubMed  CAS  Google Scholar 

  31. Maxon HR, Schroder LE, Hertzberg VS, et al: Rhenium-186(Sn)HEDP for treatment of painful osseous metastases: results of a double-blind crossover comparison with placebo. J Nucl Med 32:1877–1881, 1991

    PubMed  Google Scholar 

  32. Goeckler WF, Edwards B, Volkert WA, et al: Skeletal localization of samarium-153 chelates: potential therapeutic bone agents. J Nucl Med 28:495–504, 1987

    Google Scholar 

  33. Srivastava SC, Meinken GE, Richards P, et al: The development and in-vivo behavior of tin containing radiopharmaceuticals. I: Chemistry, preparation, and biodistribution in small animals. Int J Nucl Med Biol 12:167, 1985

    Article  PubMed  CAS  Google Scholar 

  34. Atkins HL, Mausner LF, Srivastava SC, et al: Human biodistribution of Sn-117m(4+)DTPA: A new agent for palliative therapy of painful osseous metastases. Radiology 186:279–283, 1993

    PubMed  CAS  Google Scholar 

  35. Atkins HL, Mausner LF, Srivastava SC, et al: Tin-117m(4+)-DTPA for palliation of bone from osseous metastases: A pilot study. J Nucl Med 36:725–729, 1995

    PubMed  CAS  Google Scholar 

  36. J. Lister-James, Diatide, Inc., personal communication, 1996.

    Google Scholar 

  37. Deutsch E, Bordack JW, Deutsch KF. Radiation syovectomy revisited. Eur J Nucl Med 20:1113, 1993, and references therein

    Google Scholar 

  38. Chinol M, Vallabhajousula S, Goldsmith SJ, Klein MJ, Deutsch KF, Chinen LK, Brodack JW, Deutsch EA, Watson BA, Tofe AJ. Chemistry and biological behavior of samarium-153 and rhenium-186-labeled hydroxyapatite particles: Potential radiopharmaceutical for radiation synovectomy. J Nucl Med 34:1536, 1993

    PubMed  CAS  Google Scholar 

  39. Lamb JF, Kramer HH: Commercial production of radionuclides for nuclear medicine, in Rayudu GVS (ed): Radiotracers for Medical Applications Volume I. Boca Raton, FL, CRC, 1983

    Google Scholar 

  40. Mausner LF, Mirzadeh S, Maher R, et al: Production of high specific activity 117m-Sn with the Szilard-Chalmers process. J Labelled Compds Radiopharm 16:177–178, 1989

    Article  Google Scholar 

  41. Larson SM, Pentlow KS, Volkow ND, et al: PET scanning of I-124–3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med 33:2020–2023, 1992

    PubMed  CAS  Google Scholar 

  42. Zalutsky MR, Garg PK, Friedman HS: Labeling monoclonal antibodies and F(ab’)2 with the “-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in-vivo localizing capacity. Proc Natl Acad Sci USA 86:7149–7153, 1989

    Article  PubMed  CAS  Google Scholar 

  43. Atcher RN, Friedman AM, Hines J J: An improved generator for the production of 212-Pb and 212-Bi from 224-Ra. Int J Appl Radiat Isot 39:283–286, 1988

    Article  CAS  Google Scholar 

  44. Radionuclides for Medicine and the Life Sciences, Adelstein S J, Manning FJ (ed): Washington, DC, National Academy Press, 1995, pp 1–132

    Google Scholar 

  45. Srivastava SC: Is there life after technetium: (What is the potential for developing new broad-based nuclides)?. Semin Nucl Med, 1996 (in press)

    Google Scholar 

  46. Hnatowitch DJ, Chinol M, Siebecker DA, et al: Patient biodistribution of intraperitoneally administered yttrium-90 labeled antibody. J Nucl Med 29:1428–1435, 1988

    Google Scholar 

  47. Mausner LF, Straub RF, and Srivastava SC: Production and use of prospective radionuclides for radioimmunotherapy. In: Radiolabeled Monoclonal Antibodies for Imaging and Therapy, Srivastava SC, Editor, Plenum, New York, 1988, pp. 149–163

    Google Scholar 

  48. Mausner LF, Straub RG, Srivastava SC: The in-vivo generator for radioimmunotherapy. J Labelled Compds Radiopharm 16:498–500, 1989

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Srivastava, S.C. (1996). Therapeutic Radionuclides: Making the Right Choice. In: Mather, S.J. (eds) Current Directions in Radiopharmaceutical Research and Development. Developments in Nuclear Medicine, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1768-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1768-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7289-2

  • Online ISBN: 978-94-009-1768-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics