Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants

  • Konrad Fiedler
Part of the Series Entomologica book series (SENT, volume 53)

Abstract

The Lycaenidae are the second-largest family of butterflies. From host-plant data collated for more than 1200 species worldwide, large-scale taxonomic, geographical and ecological patterns emerge which suggest that phytochemical similarities and barriers, coupled with phylogenetic conservatism and constraints are key factors governing host-plant use. More than two thirds of the lycaenid species are restricted to one plant family or genus. Affiliations with ‘toxic’ plants are rare in the Lycaenidae, and excretion rather than sequestration of plant toxins appears to be their usual way of detoxifying host-plant compounds. Flavonoids are frequently sequestered by lycaenid larvae and are subsequently concentrated as pigments in the adults’ wings, where they might play a role in visual communication. Mutualistic associations with ants occur in the larvae of more than 50% of the extant Lycaenidae species. Because of a conflict between the nutrient demands of the larvae and the proportion of plant-derived resources allocated to maintain the mutualism with ants, variation in resource quality often translates into variation of mutualistic capacities of the caterpillars, in particular under nutrient stress.

Key words

Lycaenidae Formicidae myrmecophily tritrophic interactions systematics secondary plant metabolites nutritional constraints defence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackery, P. R., 1988. Host plants and classification: a review of nymphalid butterflies. Biological Journal of the Linnean Society 33: 95–203.CrossRefGoogle Scholar
  2. Bannister, P., 1989. Nitrogen concentration and mimicry in some New Zealand mistletoes. Oecologia 79: 128–132.CrossRefGoogle Scholar
  3. Baylis, M. & N. E. Pierce, 1991. The effect of host plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecological Entomology 16: 1–9.CrossRefGoogle Scholar
  4. Baylis, M. & N. E. Pierce, 1992. Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for the loss of nutrients to ants. Physiological Entomology 17: 107–114.Google Scholar
  5. Baylis, M. & N. E. Pierce, 1993. The effects of ant mutualism on the foraging and diet of lycaenid caterpillars. In: N. E. Stamp & T. M. Casey (eds), Caterpillars — Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York/London: 404–421.Google Scholar
  6. Boppré, M., 1990. Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology. Journal of Chemical Ecology 16: 165–185.CrossRefGoogle Scholar
  7. Bowers, M. D. & S. Farley, 1990. The behaviour of grey jays, Perisoreus canadensis, towards palatable and unpalatable Lepi-doptera. Animal Behaviour 39: 699–705.CrossRefGoogle Scholar
  8. Bowers, M. D. & Z. Larin, 1989. Acquired chemical defence in the lycaenid butterfly, Eumaeus atala. Journal of Chemical Ecology 15: 1133–1146.CrossRefGoogle Scholar
  9. Burghardt, F. & K. Fiedler, 1996. The influence of diet on growth and secretion behaviour of myrmecophilous Polyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Ecological Entomology 21 (in press).Google Scholar
  10. Burghardt, F., K. Fiedler & P. Proksch, 1995. Wirtspflanzenabhängige Flavonoidmuster im Bläuling Polyommatus icarus. Verhandlungen der Deutschen Zoologischen Gesellschaft 88.1: 256.Google Scholar
  11. Cottrell, C. B., 1984. Aphytophagy in butterflies: its relationship to myrmecophily. Zoological Journal of the Linnean Society 79: 1–57.CrossRefGoogle Scholar
  12. Cushman, J. H., V. K. Rashbrook & A. J. Beattie, 1994. Assessing benefits to both participants in alycaenid-ant association. Ecology 75: 1031–1041.CrossRefGoogle Scholar
  13. Ehleringer, J. R., I. Ullmann, O. L. Lange, G. D. Farquhar, I. R. Cowan, E.-D. Schulze & H. Ziegler, 1986. Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70: 243–247.Google Scholar
  14. Ehrlich, P. R. & P. H. Raven, 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608.CrossRefGoogle Scholar
  15. Eliot, J. N., 1973. The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bulletin of the British Museum (Natural History) Entomology 28: 371–505.Google Scholar
  16. Erwin, T. L., 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopterist’s Bulletin 36: 74–75.Google Scholar
  17. Feeny, P. P., 1976. Plant apparency and chemical defence. Recent Advances in Phytochemistry 10: 1–40.Google Scholar
  18. Feeny, P., 1991. Chemical constraints on the evolution of swallowtail butterflies. In: P. W. Price, T. M. Lewinsohn, G. W. Fernandes & W. W. Benson (eds), Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley, New York: 315–340.Google Scholar
  19. Feltwell, J. S. & L. R. G. Valadon, 1970. Plant pigments identified in the common blue butterfly. Nature 255: 969.CrossRefGoogle Scholar
  20. Fiedler, K., 1990. Effects of larval diet on the myrmecophilous qualities of Polyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Oecologia 83: 284–287.CrossRefGoogle Scholar
  21. Fiedler, K., 1991. Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zoologische Monographien 31: 1–210.Google Scholar
  22. Fiedler, K., 1994. Lycaenid butterflies and plants: is myrmecophily associated with amplified host plant diversity? Ecological Entomology 19: 79–82.CrossRefGoogle Scholar
  23. Fiedler, K., 1995a. Lycaenid butterflies and plants: is myrmecophily associated with particular host plant preferences? Ethology Ecology and Evolution 7: 107–132.CrossRefGoogle Scholar
  24. Fiedler, K., 1995b. Lycaenid butterflies and plants: Host plant relationships, tropical versus temperate. Ecotropica 1: 51–58.Google Scholar
  25. Fiedler, K. & B. Hölldobler, 1992. Ants and Polyommatus icarus immatures (Lycaenidae) — sex-related developmental benefits and costs of ant attendance. Oecologia 91: 468–473.CrossRefGoogle Scholar
  26. Fiedler, K. & V Hummel, 1996. Myrmecophily in the brown argus butterfly, Aricia agestis (Lepidoptera: Lycaenidae): Effects of larval age, ant number and persistence of contacts with ants. Zoology 99 (in press).Google Scholar
  27. Fiedler, K. & C. Saam, 1994. Does ant-attendance influence development in 5 European Lycaenidae butterfly species? (Lepidoptera). Nota Lepidopterologica 17: 5–24.Google Scholar
  28. Fiedler, K. & C. Saam, 1995. Ants benefit from attending facultatively myrmecophilous Lycaenidae caterpillars: evidence from a survival study. Oecologia 104: 316–322.CrossRefGoogle Scholar
  29. Fiedler, K., B. Hölldobler & P. Seufert, 1996. Butterflies and ants: the communicative domain. Experientia 52: 14–24.CrossRefGoogle Scholar
  30. Fiedler, K., E. Krug & P. Proksch, 1993. Complete elimination of host plant quinolizidine alkaloids by larvae of a polyphagous lycaenid butterfly, Callophrys rubi. Oecologia 94: 441–445.CrossRefGoogle Scholar
  31. Fiedler, K., P. Seufert, N. E. Pierce, J. G. Pearson & H.-T. Baumgarten, 1995. Exploitation of lycaenid-ant mutualisms by bra-conid parasitoids. Journal of Research on the Lepidoptera 31: 153–168.Google Scholar
  32. Janzen, D. H., 1993. Caterpillar seasonality in a Costa Rican dry forest. In: N. E. Stamp & T. M. Casey (eds), Caterpillars — Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York/London: 448–477.Google Scholar
  33. Leimar, O. & A. Axén, 1993. Strategic behavior in an interspecific mutualism: interactions between lycaenid larvae and ants. Animal Behaviour 46: 1177–1182.CrossRefGoogle Scholar
  34. Nash, D. R., 1989. Cost-benefit analysis of a mutualism between lycaenid butterflies and ants. PhD thesis, Oxford University.Google Scholar
  35. Noë, R. & P. Hammerstein, 1994. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology 35: 1–11.CrossRefGoogle Scholar
  36. Pierce, N. E., 1985. Lycaenid butterflies and ants: selection for nitrogen-fixing and other protein-rich food plants. American Naturalist 125: 888–895.CrossRefGoogle Scholar
  37. Pierce, N. E., 1987. The evolution and biogeography of associations between lycaenid butterflies and ants. Oxford Surveys in Evolutionary Biology 4: 89–116.Google Scholar
  38. Pierce, N. E. & S. Easteal, 1986. The selective advantage of attendant ants for the larvae of a lycaenid butterfly, Glaucopsyche lygdamus. Journal of Animal Ecology 55: 451–462.CrossRefGoogle Scholar
  39. Pierce, N. E. & M. A. Elgar, 1985. The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behavioral Ecology and Sociobiology 16: 209–222.CrossRefGoogle Scholar
  40. Pierce, N. E., R. L. Kitching, R. C. Buckley, M. F. J. Taylor & K. F. Benbow, 1987. The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behavioral Ecology and Sociobiology 21: 237–248.CrossRefGoogle Scholar
  41. Renwick, J. A. A. & F. S. Chew, 1994. Oviposition behavior in the Lepidoptera. Annual Review of Entomology 39: 377–400.CrossRefGoogle Scholar
  42. Rhoades, D. F. & R. G. Cates, 1976. Toward a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry 10: 168–213.Google Scholar
  43. Robbins, R. K., 1988. Comparative morphology of the butterfly foreleg coxa and trochanter (Lepidoptera) and its systematic implications. Proceedings of the Entomological Society of Washington 90: 133–154.Google Scholar
  44. Scriber, J. M., 1995. Overview of swallowtail butterflies: taxonom-ic and distributional latitude. In: J. M. Scriber, Y. Tsubaki & R. C. Lederhouse (eds), Swallowtail Butterflies — Their Ecology and Evolutionary Biology. Scientific Publishers, Gainesville: 3–8.Google Scholar
  45. Shields, O., 1989. World numbers of butterflies. Journal of the Lepidopterists’ Society 43: 178–183.Google Scholar
  46. Slansky, F., 1993. Nutritional ecology: the fundamental quest for nutrients. In: N. E. Stamp & T. M. Casey (eds), Caterpillars-Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York/London: 29–91.Google Scholar
  47. Thompson, J. N., 1994. The Revolutionary Process. University of Chicago Press, Chicago.Google Scholar
  48. Thompson, V., 1994. Spittlebug indicators of nitrogen-fixing plants. Ecological Entomology 19: 391–398.CrossRefGoogle Scholar
  49. Vane-Wright, R. I., 1978. Ecological and behavioural origins of diversity in butterflies. In: L. A. Mound & N. Waloff (eds), The Diversity of Insect Faunas. Symposia of the Royal Entomological Society of London 9: 56–70.Google Scholar
  50. Wagner, D., 1993. Species-specific effects of tending ants on the development of lycaenid butterfly larvae. Oecologia 96: 276–281.CrossRefGoogle Scholar
  51. Wiesen, B., E. Krug, K. Fiedler, V. Wray & P. Proksch, 1994. Sequestration of host plant-derived flavonoids by lycaenid butterfly Polyommatus icarus. Journal of Chemical Ecology 20: 2523–2538.CrossRefGoogle Scholar
  52. Wilson, A., 1987. Flavonoid pigments in chalkhill blue (Lysandra coridon Poda) and other lycaenid butterflies. Journal of Chemical Ecology 13: 473–493.CrossRefGoogle Scholar
  53. Wilson, K. G. & R. E. Stinner, 1984. A potential influence of rhizobium activity on the availability of nitrogen to legume herbivores. Oecologia 61: 337–341.CrossRefGoogle Scholar
  54. Ziegler, A., 1995. Untersuchungen zur Aufnahme von Flavonoiden durch den Bläuling Aricia agestis aus seiner Wirtspflanze Geranium molle. Unpublished thesis, Würzburg University.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Konrad Fiedler
    • 1
  1. 1.Lehrstuhl für Verhaltensphysiologie und SoziobiologieTheodor-Boveri-Biozentrum der UniversitätWürzburgGermany

Personalised recommendations