Skip to main content

Abstract

The role of clay minerals in prebiotic chemistry is discussed in some of the more relevant questions about its importance. So far, data published about laboratory experiments show that clays can act as adsorbers, concentrator and catalyst for polymerization. However, there are still inconclusiveness due to: the amount of adsorbed material, type of clay used, he pH of the bulk solution, etc. All these factors affect the extent in which these capacities occurred at conditions that can be relevant to geological scenarios. Finally, some light in the role of clays can be brought by further experiments dealing with energy transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akabori, S., Okawa, K, and Sato, M. (1956) Introduction of side chains into polyglycine dispersed on solid surface. I, Bull. Chem. Soc. Japan, 29, 608–611.

    Article  CAS  Google Scholar 

  • Akabori, S. (1955) Asymmetric synthesis of amino acids and formation of fore proteins, Kagaku, 25, 54–59.

    CAS  Google Scholar 

  • Albert, J.T. and Harter, R.D. (1973) Adsorption of lysozyme and ovalbumin by clay. Effect of clay suspension pH and clay mineral type, Soil Sci. 115, 130–136.

    Article  CAS  Google Scholar 

  • Bernai, J.D. (1951) The Physical Basis of Life, Routledge and Kegan Paul, London.

    Google Scholar 

  • Degenes, E.T., Matheja, J., and Jackson, T.A. (1970) Template catalysis: Asymmetric polymerization of amino acids on clay minerals, Nature, 227, 492–493.

    Article  Google Scholar 

  • Ferris, J.P., Ertem, G., and Agarwal, V.K. (1989) The adsorption of nucleotides and polynucleotides on montmorillonite clay, Origins Life Evol. Biosphere, 19, 153–164.

    Article  CAS  Google Scholar 

  • Ferris, J.P. (1991), Prebiotic synthesis on minerals: RNA oligomer formation. In J.M. Greenberg, C.X. Mendoza-Gomez, and V. Pirronello (eds.) The Chemistry of Life’s Origins, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ferris, J.P. and Ertem, G. (1992a) Oligomerization reactions of ribonucleotides on montmorillonite: Reaction of the 5′ Phosphorimidazolide of adenosine, Science, 257, 1387–1389.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, J.P. and Ertem, G. (1992b) Oligomerization reactions of ribonucleotides: The reaction of the 5′phosphorimidazolides of nucleosides on montmorillonite and other minerals, Origins of Life Evol. Biosphere, 22, 369–381.

    Article  CAS  Google Scholar 

  • Friebele, E., Shimoyama, A., and Ponnamperuma, C. (1981) Possible selective adsorption of enantiomers by sodium montmorillonite, Origin life, Proc. ISSOL Meet. 3rd, (eds.) Wolman, Y., Reidel: Dordrecht. Neth. 337–346.

    Google Scholar 

  • Fripiat, J.J., Poncelet, G., van Assche, A.T., and Mayandon, J. (1972) Zeolite as catalysts for the synthesis of amino acids and purines, Clays Clay Miner. 20, 331–339.

    Article  CAS  Google Scholar 

  • Gibbs, D., Lohrmann, R. and Orgel, L.E. (1980) Template-directed synthesis and selective adsorption of oligonucleotides on hydroxyapatite. J. Mol. Evol. 15, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Graf, G. and Lagaly, G. (1980) Interaction of clay minerals with adenosine-5-phosphates, Clay and Clays Minerals, 28, 12–18.

    Article  CAS  Google Scholar 

  • Greenland, D.J. (1956) The adsorption of sugars by montmorillonite. I. X-ray studies, J. Sil Sci. 7, 319–328.

    Article  CAS  Google Scholar 

  • Greenland, D.J., Laby, R.H., and Quirk, J.P. (1962) Adsorption of glycine and its di-, tri- and tetrapeptides by montmorillonite, Trans. Faraday Soc. 58, 829–841.

    Article  CAS  Google Scholar 

  • Hatanaka, H., Egami, F. (1977) The formation of amino acids and related oligomers from formaldehyde and hydroxylamine in modified sea mediums related to prebiotic conditions, Bull. Chem. Soc. Japon 50, 1147–1156.

    Article  CAS  Google Scholar 

  • Hsu, Shuei-Chi, (1977) Ph.D. Dissertation, Polythechnical Institute of New York, Brooklyn, N. Y.

    Google Scholar 

  • Ibañez, J.D., Kimball, A.P., and Oró, J. (1971) Possible prebiotic condensation of mononucleotides by cyanamide, Science, 173, 444–446.

    Article  PubMed  Google Scholar 

  • Inoue, T., Orgel. L.E. (1982) Oligomerization of (guanosine 5′-phosphor)-2 methylimidazolide on Poly(C). An RNA polymerase model, J. Mol Evol. 162, 201–217.

    CAS  Google Scholar 

  • Inoue, T., Orgel. L.E. (1982) A non enzymatic RNA polymerase model. Science, 219, 859–862.

    Article  Google Scholar 

  • Jepson, W.B., Williams, J.F. (1972) Adsorption of water by clays, Clay Miner. 9, 275–279.

    Article  CAS  Google Scholar 

  • Lahav, N. and Chang, S. (1976) The possible role of solid surface area in condensation reactions during chemical evolution: re-evaluation. J. Mol. Evol. 8, 357–380.

    Article  PubMed  CAS  Google Scholar 

  • Lahav, N., White, D., and Chang, S. (1978) Peptide formation in the prebiotic era. Thermal condensation of glycine in fluctuating clay environments. Science, 201, 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Lahav, N., and Chang, S. (1982) The possible role of soluble salts in chemical evolution, J. Mol. Evol. 19, 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Lailach, G.E., Thompson, T.D., and Brindley, G.W. (1968a) Absorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite (clay-organic studies XII), Clays and Clay Mineral, 16, 285–293.

    Article  Google Scholar 

  • Lailach, G.E., Thompson, T.D., and Brindley, G.W. (1968b) Absorption of pyrimidines, purines, and nucleosides by Co-, Ni-, Cu-, and Fe(HI)-montmorillonite (clay-organic studies XIII), Clays and Clay Mineral, 16, 295–301.

    Article  Google Scholar 

  • Laszlo, P. (1987) Chemical reactions on clays, Science, 235, 1473–1477.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, S.P., Misra, S.G., Panda, N. (1957) Adsorption of glucose by calcium bentonite, Proc. Natl.Acad. Si. India, 26A, Pt 1, 72–74.

    CAS  Google Scholar 

  • Moonrbath, S. (1995) Private communication.

    Google Scholar 

  • Mortland, M.M. (1970) Clay-organic complexes and interactions, Adv. Agron. 22, 75–117.

    Article  CAS  Google Scholar 

  • Mosqueira, F.G., Albarrán, G., and Negrón-Mendoza, A. (1996) A review of conditions effecting the radiolysis due to 40K of nucleic acid bases and their derivatives adsorbed on clay minerals, Origins Life Evol. Biosphere, in press.

    Google Scholar 

  • Negrón-Mendoza, A. Ramos, S.. Albarrán, G.(1995) Enhance decarboxylation reaction of carboxylic acids in clay minerals., Radiat. Phys. Chem. 46, 565–568.

    Article  Google Scholar 

  • Nicol, S.K., Hunter, R.J. (1970) Rheological and electrokinetic properties of kaolinite suspensions, Aust. J. Chem. 23, 2177–2186.

    Article  CAS  Google Scholar 

  • Odin, G.S. (1988) The origin of clays on Earth, in Cairns-Smith and H. Hartman (eds.), Clay Minerals and the Origin of Life, Cambridge University Press, Cambridge.

    Google Scholar 

  • Odom, D., Lahav, N., and Chang, S. (1979) Association of nucleotides with homoionic clays, J. Mol. Evol. 12, 365–367.

    Article  CAS  Google Scholar 

  • Paecht-Horowitz, M., Berger, J., and Katchalsky, A. (1970) Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino acid adenylates, Nature, 228, 636–639.

    Article  PubMed  CAS  Google Scholar 

  • Perezgaga, L. Negrón-Mendoza, A., Mosqueira, G. and De Pablo, L. (1996) Site of adsorption of purines, pyrimidines and its corresponding derivatives on sodium montmorillonite. To be published.

    Google Scholar 

  • Pinnavaia, T.J., Raythatha, R., Lee, J.G., Halloran, L.J., and Hoffman, J.F. (1979) Intercalation of catalytically active metal complexes in mica-type silicates:rhodium hydrogenation catalysis. J. Am. Chem. Soc. 101, 6891–7.

    Article  CAS  Google Scholar 

  • Ponnamperuma, C., Shimoyama, A., and Friebele, E. (1982) Clay and the origin of life, Origins of Life, 9–40.

    Google Scholar 

  • Poncelet, G., van Assche, A.T., and Fripiat, J. J. (1975) Synthesis of biological molecules on molecular sieves, Origins of Life, 6, 401–406.

    CAS  Google Scholar 

  • Ramos, S. and Negrón-Mendoza, A. (1992) Radiation Heterogeneous processes of 14C-acetic acid adsorbed in Na-Montmorillonite. J. Radianal. Nucl. Chem. 160, 487–492

    Article  Google Scholar 

  • Rao, M., Odom, D.G. and Oró, J. (1980) Clays in prebiological chemistry, J. Mol. Evol. 15, 317–331.

    Article  PubMed  CAS  Google Scholar 

  • Schott, H. (1968) Deflocculation of swelling clay by nonoionicand anionic detergents, J. Colloid. Interface Sci. 26, 133–139.

    Article  CAS  Google Scholar 

  • Schwartz, A. and Orgel, L.E. (1985) Template-directed polynucleotide synthesis on mineral surface, J. Mol. Evol., 21, 299–300.

    Article  CAS  Google Scholar 

  • Shimoyama, A. and Ponnamperuma, C.(1980) in P.E. Hare, T.C. Hoering and K. King, Jr. (eds.) Biogeochemistry of Amino Acids, Pap. Conf. 1978, Wiley, New York, N.Y. 145–151.

    Google Scholar 

  • Solomon, D.H. (1968) Clay minerals as electron acceptors and or electron donors in organic reactions. Clays Clay Miner. 16, 31–39.

    Article  Google Scholar 

  • Sposito, G. (1984) The Surface Chemistry of Soils, Clarendon Press, Oxford

    Google Scholar 

  • Swartzen-Allen, S.L., and Matijevic, E. (1974) Surface and colloid chemistry, Chem. Rev. 74, 385–400.

    Article  CAS  Google Scholar 

  • Theng, B.K.G. (1974) The Chemistry of clay-organic reactions, John Wiley & Sons, New York.

    Google Scholar 

  • Weiss, A. (1969) in G. Eglinton and M. T.J. Murphy, (eds.) Organic Geochemistry, Springer-Verlag, New York, pp. 737–781.

    Google Scholar 

  • Weiss, A. (1981) Replication and evolution in inorganic systems, Angew.Chem.Int.Ed.Engl., 20, 850–860.

    Article  Google Scholar 

  • Yoshino, D., Hayatsu, R., and Anders, E. (1971) Origin of organic matter in early solar system — III. Amino acids: Catalytic synthesis, Geochim. Cosmochim. Acta, 35, 927–938.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Negron-Mendoza, A., Albarran, G., Ramos-Bernal, S. (1996). Clays as Natural Catalyst in Prebiotic Processes. In: Chela-Flores, J., Raulin, F. (eds) Chemical Evolution: Physics of the Origin and Evolution of Life. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1712-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1712-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7266-3

  • Online ISBN: 978-94-009-1712-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics