Skip to main content

Computer Modelling of Longitudinally Excited Elemental Copper Vapour Lasers

  • Chapter

Part of the book series: NATO ASI Series ((ASDT,volume 5))

Abstract

As an integral part of the steady development of copper vapour lasers over the past 30 years, computer modelling has been used to provide an insight into complex issues relating to the plasma kinetics and evolution of the optical laser fields. For example, calculations of the behaviour of the electron temperature and the flux rates of various processes are of critical importance when interpreting kinetic data obtained from experiments. However, these parameters are virtually impossible to measure experimentally due to the rapid temporal variation of the plasma variables. Numerical modelling has been employed to unravel the complicated and highly-coupled multi-species kinetics which evolves both spatially and temporally through the excitation (lasing) phase and interpulse relaxation period. Over the history of CVL development, there has been a steady increase in sophistication and reliability of the numerical models. This has been due primarily to the improved accuracy of the electron-impact impact cross-sections for copper, the availability of spatially and temporally resolved species population measurements for comparison with model predictions [1–4], and a steady increase in computing power. In this paper, the current status of computing modelling of CVL’s is presented. This includes a summary of the currently available cross-sections, and a discussion of the published models for the kinetics and the optical laser fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, D.J.W. (1988) Experimental study of excited state densities in a copper vapour laser, PhD dissertation, Univ. New England, Armidale, Australia.

    Google Scholar 

  2. Hogan, G.H. (1993) A study of the kinetics of copper vapour lasers, PhD dissertation, Oxford Univ., UK.

    Google Scholar 

  3. Isaev, A.A. and Petrash, G.G. (1993) Kinetics of excitation and physical processes in active media of copper-vapor and copper-bromide-vapor lasers, Proc. SPIE, 2110, 2–45.

    Article  ADS  Google Scholar 

  4. Smilanski, I. (1979) Copper hooks-Investigation of the copper vapour laser kinetics, Proc. Int. Conf. Lasers ’79, Orlando, Florida, 327–334, STS Press, McLean Virginia.

    Google Scholar 

  5. Leonard, D.A. (1967) A theoretical description of the 5106A pulsed copper laser, IEEE. J. Quantum Electron., QE-3, 380–381.

    Article  ADS  Google Scholar 

  6. Harsted, K.G. (1980) Computer simulated rate processes in copper vapor lasers, IEEE. J. Quantum Electron., QE-16, 550–558.

    Article  ADS  Google Scholar 

  7. Walter, W.T., Solimene, N. and Kull, G.M. (1981) Stepwise excitation — a limiting process in pulsed gas lasers, Proc. Int. Conf Lasers ’81, 853–865.

    Google Scholar 

  8. Gryzinski, M (1965) Classical theory of atomic collisions. I. Theory of inelastic collisions, Phys. Rev., 138, 336–358.

    Article  MathSciNet  ADS  Google Scholar 

  9. Scheibner, K.F., Hazi, A.U. and Henry, R.J.W. (1987) Electron-impact excitation crosssections for transitions in atomic copper, Phys. Rev. A, 35, no 11, 4869–4872.

    Article  ADS  Google Scholar 

  10. Scheibner, K.F. and Hazi, A.U., to be published.

    Google Scholar 

  11. Scheibner, K.F. and Hazi, A.U. (1988) Photo-detachment cross-section of Cu, Phys. Rev. A, 38, no 1,539–542.

    Article  ADS  Google Scholar 

  12. Hazi, A.U. Private communication.

    Google Scholar 

  13. Suvorov, V. and Teubner, P.J.O., to be published.

    Google Scholar 

  14. Flynn, C., Wei, Z. and Stumpf, B. (1993) Excitation of the copper resonance lines by low-energy electrons, Phys. Rev. A., 48, no 2, 1239–1242.

    Article  ADS  Google Scholar 

  15. Carman, R.J., Brown, DJ.W. and Piper, J.A. (1994) A self-consistent model for the discharge kinetics in a high-repetition rate copper-vapour laser, IEEE. J. Quantum Electron., QE-30, no 8, 1876–1895.

    ADS  Google Scholar 

  16. Winter, N.W. and Hazi, A.U. (1982) Review of electron impact excitation cross-sections for copper atom, Lawrence Livermore Lab., Rep. UCID 19 314.

    Google Scholar 

  17. Freund, R.S., Wetzel, R.C., Shul, R.J. and Hayes, T.R. (1990) Cross-section measurements for electron impact ionisation of atoms, Phys. Rev. A, 41, 3575–3595.

    Article  ADS  Google Scholar 

  18. Griffin, D.C. and Pindzola, M.S. (1995) Electron-impact excitation and ionisation of Cu+, J. Phys.B., in press.

    Google Scholar 

  19. Bielski, A. (1975) A critical survey of atomic transition probabilities for Cu I, J. Quantum Spectros. Radiat. Transfer, 15, 463–472.

    Article  ADS  Google Scholar 

  20. Corliss, C.H. and Bozman, W.R. (1962) Experimental transition probabilities for spectral lines of seventy elements, National Bureau of Standards Monograph 53, Washington, 81.

    Google Scholar 

  21. Froese Fischer, C. and Glass, R. (1980) The effect of correlation in the 3dn core on the resonance transition in Cu II, Physica Scripta, 21, 525–526.

    Article  ADS  Google Scholar 

  22. Kull, G.M., Solimene, N. and Walter, W.T. (1979) Modelling of pulsed gas lasers and comparison with experimental results for the copper vapor laser, Proc. Int. Conf. Lasers ’79, Orlando, Rorida, STS.

    Google Scholar 

  23. Miller, J.L. (1979) Copper vapor laser kinetics model, Lawrence Livermore Lab Rep. UC-18182.

    Google Scholar 

  24. Bokhan, P.A. and Gerasimov, V.A., Solominov, V.I. and Skcheglov, V.B. (1978) Stimulated emission mechanisms of a copper vapor laser, Sov. J. Quantum Electron., 8, 1220–1227.

    Article  Google Scholar 

  25. Harsted, K.G. (1983) Interpulse kinetics in copper and copper halide lasers, IEEE. J. Quantum Electron., QE-19, no 1, 88–91.

    Article  ADS  Google Scholar 

  26. Borovich, B.L. and Yurnchenko, N.I. (1985) Analysis of the excitation and relaxation kinetics in a copper vapor laser excited by a longitudinal discharge, Sov. J. Quantum Electron., 14, no 10, 1391–1400.

    Article  Google Scholar 

  27. Kushner, M.J. (1981) A self-consistent model for high-repetition rate copper vapor lasers, IEEE J. Quantum Electron., QE-17, 1555–1565.

    Article  ADS  Google Scholar 

  28. Kushner, M.J. and Warner, B.E. (1983) Large-bore copper-vapor lasers: Kinetics and scaling issues, J. Appl. Phys., 54, no 6, 2970–2982.

    Article  ADS  Google Scholar 

  29. Warner, B.E. and Kushner, M.J. (1981) Controlling kinetic parameters of 100W large bore copper vapor lasers, Proc. Int. Conf. Lasers ’81, New Orleans, 845–852.

    Google Scholar 

  30. Blau, P. (1994) Analysis of the impedance of a coaxial, large-bore copper-vapor laser, IEEE. J. Quantum Electron., QE-30, 763–769.

    Google Scholar 

  31. Blau, P. (1995) Spatial and temporal evolution of the electric field in a longitudinaly electric discharge pumped gas laser: Application to a large bore copper vapor laser, J. Appl. Phys., 77, 2273–2278.

    Article  ADS  Google Scholar 

  32. Borgard, J.M., Goossens, J.P., Lemaire, P. and Valrho, C.E. (1994) Impact of the electron distribution function on the copper vapor laser kinetic, Proc. Conf. Lasers and Electro-Optics Europe, Amsterdam, technical digest, CWB7.

    Google Scholar 

  33. Lewis, R.R. (1985) Mechanisms of copper vapour lasers, PhD dissertation, Oxford University, UK.

    Google Scholar 

  34. Morgan, W.L. and Vriens, L. (1980) Two electron group model and Boltzmann calculations for low pressure gas discharges, J. Appl. Phys., 51, 5300–5306.

    Article  ADS  Google Scholar 

  35. Carman, R.J. (1991) A time-dependent two electron group model for a discharge excited He-Sr recombination laser, J. Phys.D., 24, 1803–1810.

    Article  ADS  Google Scholar 

  36. Mildren, R.P., Brown, D.J.W., Carman, R.J. and Piper, J.A. (1995) The effect of hydrogen additive on population densities in the afterglow of barium vapour lasers, Opt. Comm., 120, 112–120

    Article  ADS  Google Scholar 

  37. Coutts, D.W. (1995) Time-resolved beam divergence from a copper vapour laser with unstable resonator, IEEE. J. Quantum Electron., QE-31, 330.

    Article  ADS  Google Scholar 

  38. Coutts, D.W. (1991) Beam quality and frequency conversion of copper laser output, PhD dissertation, Macquarie University, Sydney, Australia.

    Google Scholar 

  39. Eggleston, J.M. (1988) Theory of output beam divergence in pulsed unstable resonators, IEEE. J. Quantum Electron., QE-24, 1302.

    Article  ADS  Google Scholar 

  40. Coutts, D.W. and Brown, D.J.W. (1995) Formation of output in copper vapour lasers, Appl. Oprics, 34, 1502–1512.

    Article  ADS  Google Scholar 

  41. Coutts, D.W. and Brown, D.J.W., (1995) Chaotic properties of copper-vapor-laser output pulses, Proc. Int. Conf Lasers and Electro-Optics, Baltimore, technical digest, 15, CThG3.

    Google Scholar 

  42. Mclntyre, I.A. and Rhodes, C.K. (1991) High power ultrafast excimer lasers, J. Appl. Phys., 69, R1-R19.

    Article  ADS  Google Scholar 

  43. Kushner, M.J. (1979) Electronic and kinetic processes in the Cu/CuCl double pulse laser, PhD dissertation, California Institute of Technolgy, Pasadena, CA.

    Google Scholar 

  44. Buchanov, V.V., Molodykh, E.I. and Yurnchenko, N.I. (1983) Calculation of the dynamics of the radiation divergence and losses in nonaxial copper-vapor laser beams, Sov. J. Quantum Electron., 13, 1022.

    Article  Google Scholar 

  45. Borovich, B.L. and Yurnchenko, N.I. (1985) Efficiency of coupling out radiation from a resonator of a laser emitting short pulses, Sov. J. Quantum Electron., 15, no 7, 912–918.

    Article  Google Scholar 

  46. Carman, R.J. (1995) Modelling of the intracavity optical fields in a copper vapour laser, Opt. Comm., 119, 415–423.

    Article  ADS  Google Scholar 

  47. Chapman, B. (1980) Glow Discharge Processes, Wiley, NY.

    Google Scholar 

  48. Brown, D.J.W., private communication.

    Google Scholar 

  49. Belasri, A., Boeuf, J.P. and Pitchford, L.C. (1993) Cathode sheath formation in a discharge-sustained Xe-Cl laser, J. Appl. Phys., 74, no 3, 1553–1567.

    Article  ADS  Google Scholar 

  50. Akashi, H., Sakai, Y. and Tagashira, H. (1994) Modelling of a self-sustained discharge-excited ArF excimer laser, J. Phys. D., 27, 1097–1106.

    Article  ADS  Google Scholar 

  51. Simon, G. and Botticher, W. (1994) Two-dimensional model of the ignition phase of high-pressure glow discharges, J. Appl. Phys., 76, 5036–5046.

    Article  ADS  Google Scholar 

  52. Kulikovsky, A.A. (1993) Nonlinear expansion of the cathode region in atmospheric pressure glow discharge, J. Phys. D., 26, 431–435.

    Article  ADS  Google Scholar 

  53. Turnquist, D. (1979) Thyratron development for high repetition rate gas lasers, Proc. Int. Conf. Lasers ’79, Orlando, Florida, 378–387, STS Press, McLean Virginia.

    Google Scholar 

  54. Turnquist, D., Caristi, R., Friedman, S., Merz, S., Plante, R. and Reinhardt, N. (1980) New hydrogen thyratrons for advanced high power switching, IEEE. Trans, on Plasma Sci., PS-8, 185.

    Article  ADS  Google Scholar 

  55. Withford, M.J., unpublished data.

    Google Scholar 

  56. Buckley, J.M. and Maitland, A. (1992) The electrical simulation of a gas discharge excited copper laser, IEEE. Trans. Plasma Sci., 20, no 6, 979–987.

    Article  ADS  Google Scholar 

  57. Boley, C.H. (1993) Computational model of a magnetic modulator for copper lasers, Lawrence Livermore Lab, report UCRL-JC-111938.

    Google Scholar 

  58. Nehmadi, M., Kramer, Z., Ifrah, Y. and Miron, E. (1989) Mangentic pulse compression for a copper vapour laser, J. Phys. D., 22, 29–34.

    Article  ADS  Google Scholar 

  59. Cook, E.G. (1991) High average power magnetic modulator for copper lasers, Proc. Eighth IEEE. Int. Pulsed Power Conf., San-Diego, CA, 537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Carman, R.J. (1996). Computer Modelling of Longitudinally Excited Elemental Copper Vapour Lasers. In: Little, C.E., Sabotinov, N.V. (eds) Pulsed Metal Vapour Lasers. NATO ASI Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1669-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1669-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7247-2

  • Online ISBN: 978-94-009-1669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics