Skip to main content

Metal Hybrid Lasers

  • Chapter
Pulsed Metal Vapour Lasers

Part of the book series: NATO ASI Series ((ASDT,volume 5))

Abstract

A brief history of the development of HyBrID lasers is given, and the mechanisms that govern the metal seeding process in metal HyBrID lasers are discussed, with specific reference to the operating regime of the copper HyBrID laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, D.R., Maitland, A., and Little, C.E. (1994) A high efficiency 200 W average power copper HyBrID laser, IEEE J. Quantum Electron. QE-30, 2385–2390.

    Article  ADS  Google Scholar 

  2. N V Sabotinov, D R Jones, A Maitland and C E Little (1995) A copper HyBrID laser with 2.0 W/cm3 specific average output power, IEEE J. Quantum Electron. QE-31, 747–753.

    Article  ADS  Google Scholar 

  3. Results of collaborative experiments between the University of St Andrews (Scotland) and Macquarie University (Australia), announced by D.J.W. Brown during his talk at this NATO ARW (paper in preparation).

    Google Scholar 

  4. Vuchkov, N.K., Astadjov, D.N., and Sabotinov, N.V. (1982) A copper vapor laser utilizing pure copper with an admixture of other metal chlorides, Opt. Comm. 42 199–200.

    Article  ADS  Google Scholar 

  5. Saito, H., and Taniguchi, H. (1985) Low-temperature operation of copper-vapor lasers by using vapor-complex reaction of metallic copper and metal halide, IEEE J. Quantum Electron. QE-21, 1308–1309.

    Article  ADS  Google Scholar 

  6. Saito, H., and Taniguchi, H. (1985) Generation of the metal vapor-complex and low temperature operation of the metal-vapor-laser, Rev. Laser Engineering 14, 677–685.

    Google Scholar 

  7. Kano, T., Taniguchi, H. and Saito, H. (1987) A copper vapor laser by using a copper-vapor-complex reaction at a low temperature, Trans. IEICE E70 312–314.

    Google Scholar 

  8. Bokhan, P.A., Silant’ev, V.I., and Solomonov, V.I. (1980) Mechanism for limiting the repetition frequency of pulses from a copper vapor laser, Sov. J. Quantum Electron. 10 724–727.

    Article  Google Scholar 

  9. Bokhan, P.A., Mal’tsev, A.N., and Silantiev, V.I. (1980) A new mechanism for limiting generation mean power of metal-vapour pulse lasers, IX Conf. on Quantum Electronics and Nonlinear Optics, Apr. 23–26, 1980, Poznan, Poland, summaries 333–334.

    Google Scholar 

  10. Astadjov, D.N., Vuchkov, N.K., and Sabotinov, N.V. (1985) Effect of hydrogen on CuBr laser power and efficiency, Opt. Comm. 56 279–82.

    Article  ADS  Google Scholar 

  11. Huang, Z., Namba, K., and Shimizu, F. (1986) Influence of molecular gases on the output characteristics of a copper vapor laser, Jap. J. Appl. Phys. 25 1677–1679.

    Article  ADS  Google Scholar 

  12. Vetter, A.A., and Nerheim, N.M. (1977) Addition of HCl to the double-pulse copper chloride laser, Appl. Phys. Lett. 30 405–407.

    Article  ADS  Google Scholar 

  13. Tobin, R.C. (1980) Rapid differential decay of metastable populations in a copper halide laser, Opt. Comm. 32 325–330.

    Article  ADS  Google Scholar 

  14. EEV Ltd (1988), UK patent, Laser apparatus, Application No 8812276, 24 May 1988, Patent Application No 2219128 A, inventors: Maitland, A. and Livingstone, E.S.

    Google Scholar 

  15. Livingstone, E.S. and Maitland, A. (1989) A low temperature, segmented metal, copper vapour laser, J. Phys. E: Sci. Instrum. 22 63.

    Article  ADS  Google Scholar 

  16. Livingstone, E.S. and Maitland, A. (1991) A high power, segmented metal, copper bromide laser, Meas. Sci. Technol. 2 1119–1120.

    Article  ADS  Google Scholar 

  17. Little, C.E. and Piper, J.A. (1990) Average-power scaling of self-heated Sr+ afterglow recombination lasers, IEEE J. Quantum Electron., QE-26 903–910.

    Article  ADS  Google Scholar 

  18. Jones, D.R. and Little, C.E. (1992) A lead bromide laser operating at 722.9 nm and 406.2 nm, IEEE J. Quantum Electron. QE-28 590–593.

    Article  ADS  Google Scholar 

  19. Jones, D.R. and Little, C.E. (1991) Laser action at 472.2 nm in a bismuth halide laser, III European and X Nat. UK Quantum Electronics Conf., Heriot-Watt University, Edinburgh, 27–30 Aug. 1991, Technical Digest, 57.

    Google Scholar 

  20. Jones, D.R. and Little, C.E. (1992) A 472.2 nm bismuth halide laser, Optics Comm. 91 223–228.

    Article  ADS  Google Scholar 

  21. Livingstone, E.S., Jones, D.R., Maitland, A., and Little, C.E. (1992) Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas, Opt. Quantum Electron. 24 73–82.

    Article  Google Scholar 

  22. Jones, D.R. and Little, C.E. (1992) A self-heated iron bromide (λ452.9 nm) laser with Ne-HBr buffer gas”, Opt. Quantum Electron. 24 67–72.

    Article  Google Scholar 

  23. Jones, D.R. and Little, C.E. (1992) A compact, high-power, fast start-up manganese bromide laser (λ534–554 nm, 1.29–1.40 µm)” Opt. Comm. 89 80–87.

    Article  ADS  Google Scholar 

  24. Walter, W.T., Solimene, N., Piltch, M., and Gould, G. (1966) Efficient pulsed gas discharge lasers, IEEE J. Quantum Electron. QE-2 474–479.

    Article  ADS  Google Scholar 

  25. Jones, D.R., Sabotinov, N.V., Maitland, A., and Little, C.E. (1992) A high-power high-efficiency Cu-Ne-HBr (λ 510.6, 578.2 nm) laser Opt. Comm. 94 289–299.

    Article  ADS  Google Scholar 

  26. Jones, D.R., Maitland, A., and Little, C.E. (1993) A copper HyBrID laser of 120 W average output power and 2.2% efficiency Opt. and Quantum Electron. 25 261–269.

    Article  Google Scholar 

  27. Whyte, G.G., Little, C.E., Hogan, G.P., and C. E. Webb (1995) Spatially and temporally resolved measurements of election density in a copper HyBrID laser, Conf. on Lasers and Electro-Optics ‘95, Baltimore, Maryland, USA, 21–26 May 1995, OSA Technical Digest.

    Google Scholar 

  28. Rolsten, R.F. (1961) Iodide Metals and Metal Iodides (New York: John Wiley & Sons).

    Google Scholar 

  29. Waymouth, J.F. (1971) Electric Discharge Lamps (Cambridge, MA: The MIT Press).

    Google Scholar 

  30. Shelton, R.A.J. (1957) The deposition of metals other than those of the titanium group by the hot filament technique, Metallurgia 55 283–289.

    Google Scholar 

  31. Van Arkel, A.E. (1934) Über die Herstellung von hoch-schmelzenden Metallen durch thermische Dissoziation ihrer Verbindungen, Metallwirtschaft 13 405–408.

    Google Scholar 

  32. Frommer, L. and Polyani, M. (1928) Über heterogene Elementar-reaktionen I. Einwirkung von Cl2 auf Cu Z. physik. Chem. 137A 201–208.

    Google Scholar 

  33. Brewer, L. and Lofgren, N.L. (1950) The thermodynamics of gaseous cuprous chloride, monomer and trimer, J. Am. Chem. Soc. 72 3038–3045.

    Article  Google Scholar 

  34. Srigouri, K., Ramaprabhu, S., and Prasada Rao, T.A. (1986) Vapour pressure equation for metal halides used in double pulse lasers, Current Science 55 974–975.

    Google Scholar 

  35. Astadjov, D.N., Vuchkov, N.K., and Sabotinov, N.V. (1988) Parametric study of the CuBr laser with hydrogen additives, IEEE J. Quantum Electron. QE-24, 1927–1935.

    Article  ADS  Google Scholar 

  36. Jones, D.N., Halliwell, S.N., and Little, C.E. (1994) Influence of remanent electron density on the performance of copper HyBrID lasers, Optics Comm.. 111 394–402.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Little, C.E., Jones, D.R., Fairlie, S.A., Whyte, C.G. (1996). Metal Hybrid Lasers. In: Little, C.E., Sabotinov, N.V. (eds) Pulsed Metal Vapour Lasers. NATO ASI Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1669-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1669-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7247-2

  • Online ISBN: 978-94-009-1669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics