Skip to main content

From Micromaser to Microlaser

  • Chapter
  • 543 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 315))

Abstract

The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. It received a great deal of attention shortly after the maser was invented, but at that time, the problem was of purely academic interest since the matrix elements describing the radiation-atom interaction are so small. The field of a single photon is not sufficient to lead to an atom field evolution time shorter than the other characteristic times of the system, such as the excited state lifetime, the time of flight of the atom through the cavity, and the cavity mode damping time. It was therefore not possible to test experimentally the fundamental theories of radiation-matter interaction, which predict, among other effects,

  1. (a)

    a modification of the spontaneous emission rate of a single atom in a resonant cavity,

  2. (b)

    oscillatory energy exchange between a single atom and the cavity mode, and

  3. (c)

    the disappearance and quantum revival of Rabi nutation induced in a single atom by a resonant field.

The situation has drastically changed in the last few years with the introduction of frequency-tunable lasers, which can excite large populations of highly excited atomic states characterized by a high principal quantum number n of the valence electron. These states are generally called Rydberg states, since their energy levels can be described by the simple Rydberg formula.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harochc, S. and Raimond, J.M. (1985) Radiative properties of Rydberg states in resonant cavities, in D. Bates and B. Bederson (eds.), Advances in Atomic and Molecular Physics, Academic Press, New York, Vol. 20, pp. 350–411

    Google Scholar 

  2. and Gallas, J. A., Leuchs, G., Walther, H. and Figger, H. (1985) Rydberg atoms: High resolution spectroscopy and radiation interaction — Rydberg molecules, in D. Bates and B. Bederson (eds.), Advances in Atomic and Molecular Physics, Academic Press, New York, Vol. 20, pp. 413–466.

    Google Scholar 

  3. Hinds, E. (1994) Cavity quantum electrodynamics, in P. Beerman (ed.), Supplement 2 of Advances in Atomic, Molecular and Optical Physics, Academic Press, New York,

    Google Scholar 

  4. and Meschede, D. (1992) Radiating atoms in confined space: From spontaneous emission to micromasers, Phys. Rep. 211, 201–250.

    Article  ADS  Google Scholar 

  5. Haroche, S. (1992) Cavity quantum electrodynamics, in J. Dalibard, J. M. Raimond and J. Zinn-Justin (eds.), Fundamental Systems in Quantum Optics, Proceedings of Les Houches Summer School, Session LIII., North-Holland, pp. 767–940.

    Google Scholar 

  6. Meystre, P. (1992) Cavity quantum optics and the quantum measurement process, in E. Wolf (ed.), Progress in Optics, North Holland, Amsterdam, Vol. 30, pp. 261–355.

    Chapter  Google Scholar 

  7. Raithel, G., Wagner, Ch., Walther, H., Scully, M., and Narducci, L. (1994) The micromaser: A proving ground for quantum physics, in P. Beerman (ed.), Cavity Quantum Electrodynamics, Supplement 2 of Advances in Atomic, Molecular, and Optical Physics, Academic Press, New York, pp. 57–121.

    Google Scholar 

  8. Jaynes, E. T. and Cummings, F. W. (1963) Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE. 51, 89–109.

    Article  Google Scholar 

  9. Purcell, E. M. (1946) Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681.

    Article  Google Scholar 

  10. Drexhage, K. H. (1974) Interaction of light with monomolecular dye lasers, in E. Wolf (ed.), Progress in Optics, North-Holland, Amsterdam, Vol. 12, pp. XVII 165–229.

    Google Scholar 

  11. De Martini, F., Innocenti, G., Jacobovitz, G., and Mantolini, P. (1987) Anomalous spontaneous emission time in a microscopic optical cavity, Phys. Rev. Lett. 59, 2955–2958.

    Article  ADS  Google Scholar 

  12. Gabrielse, G. and Dehmelt, H. (1985) Observation of inhibited spontaneous emission, Phys. Rev. Lett. 55, 67–70.

    Article  ADS  Google Scholar 

  13. Hulet, R. G., Hilfer, E., and Kleppner, D. (1985) Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett. 55, 2137–2140.

    Article  ADS  Google Scholar 

  14. Jhe, W., Anderson, A., Hinds, E. A., Meschede, D., Moi, L., and Haroche, S. (1987) Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space, Phys. Rev. Lett. 58, 666–669.

    Article  ADS  Google Scholar 

  15. Goy, P., Raimond, J. M., Gross, M., and Haroche, S. (1983) Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50, 1903–1906.

    Article  ADS  Google Scholar 

  16. Heinzen, D. J., Childs, J. L., and Feld, M. S. (1987) Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator, Phys. Rev. Lett. 58, 1320–1323.

    Article  ADS  Google Scholar 

  17. Yamamoto, Y. S., Machita, K., Ikeda, K., and Björk, G. (1991) Controlled spontaneous emission in micro-cavity semiconductor lasers, in Y. Yamamoto (ed.), Coherence Amplification and Quantum Effects in Semiconductor Lasers, Wiley, New York.

    Google Scholar 

  18. Yablonovitch, E. (1987) Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062.

    Article  ADS  Google Scholar 

  19. Yablonovitch, E., Gmitter, T. J., and Bhat, R. (1988) Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructure, Phys. Rev. Lett 61, 2546–2549.

    Article  ADS  Google Scholar 

  20. Yablonovitch, E. and Gmitter, T. J. (1989) Photonic band structure: the face-centered-cubic case, Phys. Rev. Lett. 63, 1950–1953.

    Article  ADS  Google Scholar 

  21. Meschede, D., Walther, H., and Müller, G. (1985) The one-atom maser, Phys. Rev.Lett. 54, 551–554.

    Article  ADS  Google Scholar 

  22. See, for example: Eberly, J. H., Narozhny, N. B., and Sanchez-Mondragon, J. J. (1980) Periodic spontaneous collapse and revival in a simple quantum model, Phys. Rev. Lett. 44, 1323–1326 and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  23. Rempe, G., Walther, H., and Klein, N. (1987) Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58, 353–356.

    Article  ADS  Google Scholar 

  24. Filipowicz, P., Javanainen, J., and Meystre, P. (1986) The microscopic maser, Opt. Comm. 58, 327–330

    Article  ADS  Google Scholar 

  25. (1986) Theory of a microscopic maser, Phys. Rev. A 34, 3077–3087

    Article  ADS  Google Scholar 

  26. (1986) Quantum and semiclassical steady states of a kicked cavity mode, J. Opt. Soc. Am. B 3, 906–910.

    ADS  Google Scholar 

  27. Lugiato, L., Scully, M. O., and Walther, H. (1987) Connection between microscopic and macroscopic maser theory, Phys. Rev. A 36, 740–743.

    ADS  Google Scholar 

  28. Meystre, P. (1987) Repeated quantum measurements on a single-harmonic oscillator, Opt. Lett. 12, 669–671

    Article  ADS  Google Scholar 

  29. Meystre, P. (1988) Generation and detection of subpoissonian fields in micromasers, in P. Tombesi and E.R. Pike (eds.), Squeezedand Nonclassical Light, Plenum, New York, pp. 115–127.

    Google Scholar 

  30. Meystre, P. and Wright, E. M. (1988) Measurement induced dynamics of a micromaser, Phys. Rev. A 37, 2524–2529.

    Article  ADS  Google Scholar 

  31. Rempe, G. and Walther, H. (1990) Sub-Poissonian atomic statistics in a micromaser, Phys. Rev. A 42, 1650–1655.

    Article  ADS  Google Scholar 

  32. Paul, H. and Richter, T. (1991) Bunching and antibunching of de-excited atoms leaving a micromaser, Opt. Comm. 85, 508–519.

    Article  ADS  Google Scholar 

  33. Rempe, G., Schmidt-Kaler, F., and Walther, H. (1990) Observation of sub-Poissonian photon statistics in a micromaser, Phys. Rev. Lett. 64, 2783–2786.

    Article  ADS  Google Scholar 

  34. Briegel, H. J., Englert, B. G., Sterpi, N., and Walther, H. (1994) One-atom maser: Statistics of detector clicks, Phys. Rev. A 49, 2962–2984.

    Article  ADS  Google Scholar 

  35. Wagner, C., Schenzle, A., and Walther, H. (1994) Atomic waiting-times and correlation functions, Opt. Comm. 107, 318–326.

    Article  ADS  Google Scholar 

  36. Benson, O., Raithel, G., and Walther, H. (1994) Quantum jumps of the micromaser field — dynamic behavior close to phase transition points, Phys. Rev. Lett. 72, 3506–3509.

    Article  ADS  Google Scholar 

  37. Davidovich, L., Raimond, J. M., Brune, M., and Haroche, S. (1987) Quantum theory of the two-photon micromaser, Phys. Rev. A 36, 3771–3786

    Article  ADS  Google Scholar 

  38. Brune, M., Raimond, J. M., Goy, P., Davidovich, L., and Haroche, S. (1987) Realisation of a two-photon maser oscillator, Phys. Rev. Lett. 59, 1899–1902.

    Article  ADS  Google Scholar 

  39. Meystre, P., Rempe, G., and Walther, H. (1988) Very-low temperature behaviour of a micromaser, Opt. Lett. 13, 1078–1080.

    Article  ADS  Google Scholar 

  40. Raithel, G., Wagner, Ch., Walther, H., Narducci, L. M., and Scully, M. O. (1994) The micromaser: A proving ground for quantum physics, in P. Berman (ed.), Advances in Atomic, Molecular, and Optical Physics, Supplement 2, Academic Press, New York, pp. 57–121.

    Google Scholar 

  41. Scully, M. O., Walther, H., Agarwal, G. S., Quang, T., and Schleich, W. (1991) Micromaser spectrum, Phys. Rev. A 44, 5992–5996.

    Article  ADS  Google Scholar 

  42. Quang, T., Agarwal, G. S., Bergou, J., Scully, M. O., Walther, H., Vogel, K., and Schleich, W. P. (1993) Calculation of the micromaser spectrum I. Green’s-function approach and approximate analytical techniques, Phys. Rev. A 48, 803–812

    Article  ADS  Google Scholar 

  43. Vogel, K., Schleich, W. P., Scully, M. O., and Walther, H. (1993) Calculation of the micromaser spectrum II. Eigenvalue approach, Phys. Rev. A 48, 813–817.

    Article  ADS  Google Scholar 

  44. Krause, J., Scully, M. O., and Walther, H. (1986) Quantum theory of the micromaser: Symmetry breaking via off-diagonal atomic injection, Phys. Rev. A 34, 2032–2037.

    Article  ADS  Google Scholar 

  45. Brecha, R. J., Peters, A., Wagner, C., and Walther, H. (1992) Micromaser and separated-oscillatory-field measurements, Phys. Rev. A 46, 567–577.

    Article  ADS  Google Scholar 

  46. Wagner, C., Brecha, R. J., Schenzle, A., and Walther, H. (1992) Phase diffusion and continuous quantum measurements in the micromaser, Phys. Rev. A 46, R5350.

    Article  ADS  Google Scholar 

  47. Wagner, C., Brecha, R. J., Schenzle, A., and Walther, H. (1993) Phase diffusion, entangled states, and quantum measurements in the micromaser, Phys. Rev. A 47, 5068–5079.

    Article  ADS  Google Scholar 

  48. Scully, M. O. and Walther, H. (1989) Quantum optical test of observation and complementarity in quantum mechanics, Phys. Rev. A 39, 5229–5236.

    Article  MathSciNet  ADS  Google Scholar 

  49. Scully, M. O., Englert, B.-G., and Walther, H. (1991) Quantum optical tests of complementarity, Nature 351, 111–116.

    Article  ADS  Google Scholar 

  50. Englert, B.-G., Walther, H., and Scully, M. O. (1992) Quantum optical Ramsey fringes and complementarity, Appl. Phys. B 54, 366–368.

    Article  ADS  Google Scholar 

  51. Yamamoto, Y. and Slusher, R. S. (1993) Optical processes in microcavities, Physics Today 46, 66–73.

    Article  Google Scholar 

  52. De Martini, F., Jacobovitz, G. R. (1988) Anomalous spontaneous-stimulated decay phase transition and zero-threshold laser action in a microscopic cavity, Phys. Rev. Lett. 60, 1711–1714.

    Article  ADS  Google Scholar 

  53. Yokoyama, H. (1992) Physics and device applications of optical microcavities, Science 256, 66–70.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Benson, O., Raithel, G., Walther, H. (1996). From Micromaser to Microlaser. In: Soukoulis, C.M. (eds) Photonic Band Gap Materials. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1665-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1665-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7245-8

  • Online ISBN: 978-94-009-1665-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics