Skip to main content

Photonic Band Structures and Resonant Modes

  • Chapter
Photonic Band Gap Materials

Part of the book series: NATO ASI Series ((NSSE,volume 315))

  • 549 Accesses

Abstract

This paper reports on schemes for the accurate determination of the electromagnetic properties of photonic crystals with arbitrary underlying lattice symmetry, using a real space transfer matrix method. The schemes are applied to hexagonal crystals and diamond-symmetry crystals, and results are compared with those obtained using a plane wave expansion method. The transfer matrix method is then applied to systems which comprise stacked finite-thickness photonic crystals with different but overlapping photonic stop bands, between which there can exist a planar cavity. Such ultra wide band gap structures can display scattering characteristics attributable to the presence of resonant modes at frequencies within the intersection of the stop band frequency ranges of the individual crystals. An initial study is presented of two stacked hexagonal crystals whose invariant axes are parallel. Results for stacked diamond-symmetry photonic crystals axe imminent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  2. E. Yablonovitch, T. J. Gmitter, and K.M. Leung, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  3. E. Yablonovitch, J. Opt. Soc. Am. 10, 283 (1993).

    ADS  Google Scholar 

  4. P. St.J. Russell, T. A. Birks, and F. D. Lloyd-Lucas, to be published in “Confined Electrons and Photons: New Physics and Applications”, E. Burstein & C. Weisbuch (editors), (Plenum Press).

    Google Scholar 

  5. P. J. Roberts, T. A. Birks, P. St.J. Russell, T. J. Shepherd, and D. M. Atkin, submitted to Opt. Lett..

    Google Scholar 

  6. V. Karathanos, A. Modinos, and N. Stefanou, J. Phys: Condens. Matter 6, 6257 (1994).

    Article  ADS  Google Scholar 

  7. K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, Electron. Lett. 30, 2166 (1994).

    Article  Google Scholar 

  8. J. B. Pendry and A. MacKinnon, Phys. Rev. Lett. 69, 2772 (1992).

    Article  ADS  Google Scholar 

  9. J. B. Pendry, J. Mod. Opt. 41, 209 (1994).

    Article  ADS  Google Scholar 

  10. P. M. Bell, J. B. Pendry, L. Martin-Moreno, and A. J. Ward, Comp. Phys. Commun. 85, 306 (1995).

    Article  ADS  Google Scholar 

  11. A. J. Ward, J. B. Pendry, and W. J. Stewart, J. Phys: Condens. Matter 7, 2217 (1995).

    Article  ADS  Google Scholar 

  12. K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1991).

    Article  ADS  Google Scholar 

  13. Z. Zhang and S. Zatpathy, Phys. Rev. Lett. 65, 2650 (1991).

    Article  ADS  Google Scholar 

  14. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1991).

    Article  ADS  Google Scholar 

  15. C. T. Chan, K. M. Ho, and C. M. Soukoulis, Europhys. Lett. 16, 563 (1991).

    Article  ADS  Google Scholar 

  16. P. R. Villeneuve and M. Piché, Phys. Rev. B46, 4969 (1992).

    ADS  Google Scholar 

  17. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Appl. Phys. Lett. 61, 495 (1992).

    Article  ADS  Google Scholar 

  18. R. Padjen, J. M. Gerard, and J. Y. Marzin, J. Mod. Opt. 41, 295 (1994).

    Article  ADS  Google Scholar 

  19. J. N. Win, R. D. Meade, and J. D. Joannopoulos, J. Mod. Opt. 41, 257 (1994).

    Article  ADS  Google Scholar 

  20. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994).

    Article  ADS  Google Scholar 

  21. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, App. Phys. Lett. 64, 2059 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roberts, P.J., Tapster, P.R., Shepherd, T.J. (1996). Photonic Band Structures and Resonant Modes. In: Soukoulis, C.M. (eds) Photonic Band Gap Materials. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1665-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1665-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7245-8

  • Online ISBN: 978-94-009-1665-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics