Skip to main content

Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta)

  • Conference paper

Part of the Developments in Hydrobiology book series (DIHY,volume 116)

Abstract

Spatial variation in polyphenolic content in annual shoots of the brown alga Ascophyllum nodosum was quantified using a hierarchical sampling design. Three sampling levels, covering distances of 100-106 m, were used. Comparisons were made between two areas, Tjärnö on the Swedish west-coast and the Isle of Man in the Irish Sea, with very different types of environmental conditions. No significant differences in mean polyphenolic levels were found between the two study areas (6.6% of dry mass at Tjärnö and 9.2% at the Isle of Man), whereas significant and substantial differences were found among sites within areas (range 5.7%—11.4%) and among quadrats within sites (range 3.7%—13.1%). The extensive variation at the smaller spatial scales points out the importance of using thorough sampling procedures at all levels in large-scale studies on algal polyphenolics, e.g. biogeographical comparisons, which have been neglected in several previous studies. Moreover, the results imply that experiments on causal factors of polyphenolic variation should be designed to explain the spatial scales on which the factors are important. This study also investigated the relationship between polyphenolic concentration and both plant size and mean area of annual shoots. The mean area was used as an estimate of the mean growth rate of the annual shoots within an individual. No significant relationships were found between shoot growth rate, or plant size, and polyphenolic levels in annual shoots at any of the three spatial scales that were investigated.

Key words

  • Ascophyllum nodosum
  • brown algae
  • chemical defenses
  • phlorotannins
  • polyphenolics
  • seaweeds
  • spatial variation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-009-1659-3_27
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-94-009-1659-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åberg, P., 1989. Distinguishing between genetic individuals in Ascophyllum nodosum populations on the Swedish west coast. Br. phycol.J.24: 183–190.

    CrossRef  Google Scholar 

  • Åberg, P., 1990. Measuring size and choosing category size for a transition matrix study of the seaweed Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 63: 281–287.

    CrossRef  Google Scholar 

  • Åberg, P., 1992. A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73: 1473–1487.

    CrossRef  Google Scholar 

  • Association of Official Analytical Chemists (AOAC)., 1970. Official methods of the association of official agricultural chemists. AOAC, Washington D.C.

    Google Scholar 

  • Boettcher, A. A. & N. M. Targett, 1993. Role of poly phenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74: 891–903.

    CrossRef  CAS  Google Scholar 

  • Bryant, J. P., F. S. Chapin & D. R. Klein, 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.

    CrossRef  CAS  Google Scholar 

  • Denton, A., A. R. O. Chapman & J. Markham, 1990. Size-specific concentrations of phlorotannins (anti-herbivore compounds) in three species of Fucus. Mar. Ecol. Prog. Ser. 65: 103–104.

    CrossRef  CAS  Google Scholar 

  • Geiselman, J. A. & O. J. McConnell, 1981. Polyphenols in brown algae Fucus vesiculosus and Ascophyllum nodosum: chemical defenses against the marine herbivorous snail, Littorina littorea. J. chem. Ecol. 7: 1115–1133.

    CrossRef  CAS  Google Scholar 

  • Hay, M. E. & W. Fenical, 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Ann. Rev. Ecol. Syst. 19: 111–145.

    CrossRef  Google Scholar 

  • Hay, M. E. & W. Fenical, 1992. Chemical mediation of seaweedherbivore interactions. In D. M. John, S.J. Hawkins & J. H. Price (eds), Plant-Animal Interactions in the Marine Benthos. Clarendon Press, Oxford: 319–337.

    Google Scholar 

  • Johannesson, K., 1989. The bare zone of Swedish rocky shores: why is it there? Oikos 54: 77–86.

    CrossRef  Google Scholar 

  • Pedersen, A., 1984. Studies on phenol content and heavy metal uptake in fucoids. Proc. int. Seaweed Symp. 11: 498–504.

    Google Scholar 

  • Pfister, C. A., 1992. Cost of reproduction in an intertidal kelp: patterns of allocation and life history consequences. Ecology 73: 1586–1596.

    CrossRef  Google Scholar 

  • Ragan, M. A. & A. Jensen, 1977. Quantitative studies on brown algal phenols. I. Estimation of absolute polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J. exp. Mar. Biol. Ecol. 30: 209–221.

    CrossRef  CAS  Google Scholar 

  • Ragan, M. A. & K.-W. Glombitza, 1986. Phlorotannins, brown algal polyphenols. In F. E. Round & D. J. Chapman (eds), Progress in Phycological Research. Biopress Ltd., Bristol, 4: 129–241.

    Google Scholar 

  • Rönnberg, O. & C. Ruokolahti, 1986. Seasonal variation of algal epiphytes and phenolic content of Fucus vesiculosus in a northern Baltic archipelago. Ann. bot. fenn. 23: 317–323.

    Google Scholar 

  • Singleton, V. L. & J. A. Rossi, 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144–158.

    CAS  Google Scholar 

  • Snedecor, G. W. & W. G. Cochran, 1989. Statistical Methods. Iowa State University Press, Ames, 503 pp.

    Google Scholar 

  • Steinberg, P. D., 1984. Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. 223: 405–406.

    CAS  Google Scholar 

  • Steinberg, P. D., 1989. Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia 78: 373–382.

    CrossRef  Google Scholar 

  • Steinberg, P. D., 1992. Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In V. J. Paul (ed.), Ecological roles of marine natural products. Cornell University, New York: 51– 92.

    Google Scholar 

  • Steinberg, P. D. & I. A. Van Altena, 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol. monogr. 62: 189–222.

    CrossRef  Google Scholar 

  • Steinberg, P. D., K. Edyvane, R. DeNys, R. Birdsey & I. A. Van Altena, 1991. Lack of avoidance of phenolic-rich brown algae by tropical herbivores fishes. Mar. Biol. 109: 335–343.

    CrossRef  Google Scholar 

  • Targett, N. M., L. D. Coen, A. A. Boettcher & C. E. Tanner, 1992. Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia 89: 464–470.

    Google Scholar 

  • Thorslund, B., 1966. Isförhallanden i svenska farvatten under normalperioden 1931–1960. Sveriges Meteorologiska och Hydrologiska Institut, Meteorologi Nr 13, Stockholm, 36 pp.

    Google Scholar 

  • Tuomi, J., H. Ilvessalo, P. Niemelä, S. Sirén & V. Jormalainen, 1989. Within-plant variation in phenolic content and toughness of the brown alga Fucus vesiculosus L. Bot. Mar. 32: 505–509.

    CrossRef  Google Scholar 

  • Underwood, A. J., 1981. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. annu. Rev. 19: 513–605.

    Google Scholar 

  • Underwood, A. J., 1991. The logic of ecological experiments: a case history from studies of the distribution of macro-algae on rocky intertidal shores. J. mar. biol. Ass. U.K. 71: 841–866.

    CrossRef  Google Scholar 

  • Van Alstyne, K. L., 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69: 655–663.

    CrossRef  Google Scholar 

  • Van Alstyne, K. L. & V J. Paul, 1990. The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84:158–163.

    Google Scholar 

  • Winer, B. J., D. R. Brown & K. M. Michels, 1991. Statistical principles in experimental designs. McGraw-Hill, Inc., 1057 pp.

    Google Scholar 

  • Winter, F C. & J. A. Estes, 1992. Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotis rufescens. Swainson. J. exp. Mar. Biol. Ecol. 155: 263–277.

    CrossRef  CAS  Google Scholar 

  • Yates, J. L. & P. Peckol, 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74: 1757–1766.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Pavia, H., Åberg, P. (1996). Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). In: Lindstrom, S.C., Chapman, D.J. (eds) Fifteenth International Seaweed Symposium. Developments in Hydrobiology, vol 116. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1659-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1659-3_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7242-7

  • Online ISBN: 978-94-009-1659-3

  • eBook Packages: Springer Book Archive