Skip to main content

Basics of Cavity Quantum Electrodynamics

  • Chapter
Quantum Optics of Confined Systems

Part of the book series: NATO ASI Series ((NSSE,volume 314))

Abstract

The mode structure of a confined electromagnetic field is drastically modified by the boundary conditions. The radiative properties of an “atom” in confined space can thus be very different from the free space ones. For instance, spontaneous emission rates can be altered, the energy levels may be shifted. In extreme situations, the spontaneous emission may even become a reversible, oscillatory process. The study of these effects constitutes the growing field of Cavity Quantum Electrodynamics (CQED).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Purcell E.M., Spontaneous emission probabilities at radio frequencies, Phys. Rev.69:681 (1946).

    Article  Google Scholar 

  2. Casimir H.B.G., and Polder D., The influence of retardation on the London-van der Waals force, Phys. Rev.73:360 (1948).

    Article  ADS  MATH  Google Scholar 

  3. Drexhage K.H., Interaction of light with monomolecular dye layers, in: “Progress in Optics XII”, Wolf E. ed., p. 163, North Holland, Amsterdam (1974).

    Chapter  Google Scholar 

  4. Goy P., Raimond J.M., Gross M., and Haroche S., Observation of cavity-enhanced single atom spontaneous emission, Phys. Rev. Lett.50:1903 (1983).

    Article  ADS  Google Scholar 

  5. Hulet R.G., Hilfer E.S., and Kleppner D., Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett.55:2137 (1985).

    Article  ADS  Google Scholar 

  6. Sandoghdar V., Sukenik C., Hinds E., and Haroche S., Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity, Phys. Rev. Lett.68:3432 (1992).

    Article  ADS  Google Scholar 

  7. Raimond J.M., Goy P., Gross M., Fabre C., and Haroche S., Statistics of millimeter-wave photons emitted by a Rydberg atom maser: an experimental study of fluctuations in single mode superradiance, Phys. Rev. Lett.49:1924 (1982).

    Article  ADS  Google Scholar 

  8. Kaluzny Y., Goy P., Gross M., Raimond J.M., and Haroche S., Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity, Phys. Rev. Lett.51:1175 (1983).

    Article  ADS  Google Scholar 

  9. Meschede D., Walther H., and Klein N., One-atom maser, Phys. Rev. Lett.54:551 (1985).

    Article  ADS  Google Scholar 

  10. Rempe G., Schmidt-Kaler F., and Walther H., Observation of sub-Poissonian photon statistics in a micromaser, Phys. Rev. Lett.64:2783 (1990).

    Article  ADS  Google Scholar 

  11. Brune M., Raimond J.M., Goy P., Davidovich L., and Haroche S., Realization of a two-photon maser oscillator, Phys. Rev. Lett.59:1899 (1987).

    Article  ADS  Google Scholar 

  12. Rempe G., Walther H., and Klein N., Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett.58:353 (1987).

    Article  ADS  Google Scholar 

  13. Bernardot F., Nussenzveig P., Brune M., Raimond J.M., and Haroche S., Vacuum Rabi splitting observed on a microscopic atomic sample in a microwave cavity, Euro. Phys. Lett.17:33 (1991).

    Article  ADS  Google Scholar 

  14. Brune M., Nussenzveig P., Schmidt-Kaler F., Bernardot F., Maali A., Raimond J.M. and Haroche S., From Lamb shift to light shifts: vacuum and subphoton cavity fields measured by atomic phase sensitive detection, Phys. Rev. Lett 72:3339 (1994).

    Article  ADS  Google Scholar 

  15. Einstein A., Podolski B., and Rosen N., Can quantum mechanical description of physical reality be considered complete?, Phys. Rev.47:777 (1935).

    Article  ADS  MATH  Google Scholar 

  16. Schrödinger E., Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften 23:807, 823 (1935).

    Google Scholar 

  17. Brune M., Haroche S., Lefèvre V., Raimond J.M., and Zagury N., Quantum non-demolition measurements of small photon numbers by Rydberg atom phase sensitive detection, Phys. Rev. Lett.65:976 (1990).

    Article  ADS  Google Scholar 

  18. Brune M., Haroche S., Raimond J.M., Davidovich L., and Zagury N., Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non demolition measurements and Schrödinger cat states, Phys. Rev.A45:5193 (1992).

    ADS  Google Scholar 

  19. Davidovich L., Maali A., Brune M., Raimond J.M., and Haroche S., Quantum switches and non-local microwave fields, Phys. Rev. Lett.71:2360 (1993).

    Article  ADS  Google Scholar 

  20. Jhe W., Anderson A., Hinds E.A., Meschede D., Moi L., and Haroche S., Suppression of spontaneous decay at optical frequencies: test of vacuum field anisotropy in confined space, Phys. Rev. Lett.58:666 (1987).

    Article  ADS  Google Scholar 

  21. de Martini F., Innocenti G., Jacobowitz G.R., and Mataloni P., Anomalous spontaneous emission time in a microscopic optical cavity, Phys. Rev. Lett.59:2955 (1987).

    Article  ADS  Google Scholar 

  22. Yokoyama H., Suzuki M., and Nambu Y., Spontaneous emission and laser oscillation properties of microcavities containing a dye solution, Appl. Phys. Lett.58:2598 (1991).

    Article  ADS  Google Scholar 

  23. Heinzen D.J., Childs J.J., Thomas J.E., and Feld M.S., Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator, Phys.Rev. Lett.58:1320 (1987).

    Article  ADS  Google Scholar 

  24. Heinzen D.J., and Feld M.S., Vacuum radiative level shift and spontaneous emission linewidth of an atom in an optical resonator, Phys. Rev. Lett.59:2623 (1987).

    Article  ADS  Google Scholar 

  25. Thompson R.J., Rempe G., and Kimble H.J., Observation of normal mode splitting for an atom in an optical cavity, Phys. Rev. Lett.68:1132 (1992).

    Article  ADS  Google Scholar 

  26. Braginsky V.B., Gorodetsky M.L. and Ilchenko V.S., Quality factors and non-linear properties of optical whispering gallery modes, Phys. Lett. A 137:393 (1989).

    Article  ADS  Google Scholar 

  27. Collot L., Lefèvre V., Brune M., Raimond J.M., and Haroche S., Very high Q whispering gallery mode resonances observed on fused silica microspheres, Euro. Phys. Lett.23:327 (1993).

    Article  ADS  Google Scholar 

  28. Mabuchi H. and Kimble H.J., Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator, Opt. Lett., 19:749 (1994).

    Article  ADS  Google Scholar 

  29. Yablonovitch E., Gmitter T.J., and Bhat R., Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructure, Phys. Rev. Lett.61:2546 (1988).

    Article  ADS  Google Scholar 

  30. Yokoyama H., Nishi K., Anan T., Yamada H., Brorson S.D., and Ippen E.P., Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities, Appl. Phys. Lett.57:2814 (1990).

    Article  ADS  Google Scholar 

  31. Björk G., Machida S., Yamamoto Y., and Igeta K., Modification of spontaneous emission rate in planar dielectric microcavity structures, Phys. Rev.A44:669 (1991).

    ADS  Google Scholar 

  32. Weisbuch C., Nishioka M., Ishikawa A., and Arakawa Y., Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett.69:3314 (1992).

    Article  ADS  Google Scholar 

  33. Machida S., and Yamamoto Y., Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser, Opt. Comm.57:290 (1986);

    Article  ADS  Google Scholar 

  34. b Richardson W.H., Machida S. and Yamamoto Y., Squeezed photon number noise and sub-poissonian electrical partition noise in a semi-conductor laser, Phys. Rev. Lett 66:2867 (1991).

    Article  ADS  Google Scholar 

  35. Loudon R., The quantum theory of light, Oxford University Press (1983).

    Google Scholar 

  36. Cohen-Tannoudji C., Dupont-Roc J., and 0Grymberg G. “An Introduction to Quantum Electrodynamics” and “Photons and atoms”, Wiley, New York (1992).

    Google Scholar 

  37. Haroche S., Rydberg atoms and radiation in a resonant cavity, in: “New Trends in Atomic Physics, Les Houches Summer School Session XXXVIII”, Grymberg G., and Stora R. eds., North Holland, Amsterdam (1984).

    Google Scholar 

  38. Haroche S., Cavity Quantum Electrodynamics, in: “Fundamental Systems in Quantum Optics, Les Houches Summer School, Session LIII”, Dalibard J., Raimond J.M., and Zinn-Justin J., eds., North Holland, Amsterdam (1992).

    Google Scholar 

  39. Haroche S. and Raimond J.M., Radiative properties of Rydberg states in resonant cavities, in: “Advances in Atomic and Molecular Physics Vol XX”, Bates D., and Bederson B. eds., Academic Press, New York (1985).

    Google Scholar 

  40. Haroche S. and Raimond J.M., Manipulation of non classical field states in a cavity by atom interferometry, in “Cavity Quantum Electrodynamics, Special Issue of Advances in Atomic and Molecular Physics”, Berman P. ed., Academic Press, New York, p123 (1994).

    Google Scholar 

  41. Glauber R.J., Optical coherence and photon statistics, in: “Quantum Optics and Electronics, Les Houches Summer School”, de Witt C., Blandin A., and Cohen-Tannoudji C. eds., Gordon and Breach, London (1965).

    Google Scholar 

  42. Hulet R.G., and Kleppner D., Rydberg atoms in “circular” states, Phys. Rev. Lett 51:1430 (1983).

    Article  ADS  Google Scholar 

  43. Rempe G., Thompson R.J., Kimble H.J., and Lalezari R., Measurement of ultra low losses in an optical interferometer, Opt. Lett.17:363 (1992).

    Article  ADS  Google Scholar 

  44. Mollow B.R., Power spectrum of light scattered by two-level systems, Phys. Rev.188:1969 (1969).

    Article  ADS  Google Scholar 

  45. Zhu Y., Gauthier D.J., Morin S.E., Wu Q., Charmichael H.J., and Mossberg T.W., Vacuum Rabi splitting as a feature of linear dispersion theory: analyzis and experimental observation, Phys. Rev. Lett.64:2499 (1990).

    Article  ADS  Google Scholar 

  46. Cohen-Tannoudji C., Introduction to quantum electrodynamics, in: “New Trends in Atomic Physics, Les Houches Summer School Session XXXVIII”, Grymberg G. and Stora R. eds., North Holland, Amsterdam (1984).

    Google Scholar 

  47. Dalibard J., Dupont-Roc J., and Cohen-Tannoudji C., Vacuum fluctuations and radiation reaction: identification of their respective contributions, J. Phys. (Paris) 43:1617 (1982).

    Google Scholar 

  48. Raimond J.M., Vitrant G., and Haroche S., Spectral line broadening due to the interaction between very excited atoms: the dense Rydberg gas, J. Phys. B. Lett.14:L655 (1981).

    ADS  Google Scholar 

  49. Dicke R.H., Coherence in spontaneous radiation processes, Phys. Rev.93:99 (1954).

    Article  ADS  MATH  Google Scholar 

  50. Gross M., and Haroche S., Superradiance, an essay on the theory of collective spontaneous emission, Phys. Rep.93:302 (1982).

    Article  ADS  Google Scholar 

  51. Davidovich L., Raimond J.M., Brune M., and Haroche S., Quantum theory of a two-photon micromaser, Phys. Rev.A36:3771 (1987).

    ADS  Google Scholar 

  52. Sorokin P.P., and Braslau N., Some theoretical apsects of a proposed double quantum stimulated emission device, IBM J. Res. and Dev.8:177 (1964);

    Article  Google Scholar 

  53. Prokhorov A.M., Quantum electrodynamics, Science 149:828 (1965).

    Google Scholar 

  54. Filipowicz P., Javanainen J., and Meystre P., Theory of a microscopic maser, Phys. Rev.A34:3077 (1986).

    ADS  Google Scholar 

  55. Filipowicz P., Javanainen J., and Meystre P., Quantum and semi classical steady states of a kicked cavity mode, J. Opt. Soc. Am.B3:906 (1986).

    ADS  Google Scholar 

  56. Rempe, G. and Walther H., Sub-poissonian atomic statistics in a micromaser, Phys. Rev.A42:1650 (1990).

    ADS  Google Scholar 

  57. Meystre P. and Wright E.M., Measurements-induced dynamics of a micromaser, Phys. Rev.A37:2524 (1988).

    ADS  Google Scholar 

  58. Benson O., Raithel G. and Walther H., Quantum jumps of the micromaser field: dynamic behavior close to phase transition points, Phys. Rev. Lett.72:3506 (1994).

    Article  ADS  Google Scholar 

  59. Leggett A.J., Chakravarty S., Dorsey A.T., Fisher M.P.A., Garg A. and Zwerger W., Dynamics of the dissipative two-state system, Rev. Mod. Phys.59:1 (1987);

    Article  ADS  Google Scholar 

  60. Caldeira A.D., and Leggett A.J., Quantum tunneling in a dissipative system, Ann. Phys. (N.Y.) 149:374 (1983).

    Article  ADS  Google Scholar 

  61. Raimond J.M., Brune M., Goy P., and Haroche S., Micromaser à deux photons, Ann de Physique, Coll, Paris 15:17 (1990).

    Google Scholar 

  62. Zurek W. Decoherence and the transition from quantum to classical, Physics Today, Oct 1991, p. 36.

    Google Scholar 

  63. Bell, J.S., Speakable and unspeakable in quantum mechanics, Cambridge University press, Cambridge, (1987).

    Google Scholar 

  64. Greenberger, D.M., Horne, M.A., Shimony, A., and Zeilinger, A., Bell’s theorem without inequalities, Am. J. of Phys.58, 1131 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  65. Deutsch D., Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Roy. Soc. London A400:97 (1985);

    MathSciNet  ADS  Google Scholar 

  66. Deutsch D., Quantum computational networks, Proc. Roy. Soc. London A425,73 (1989);

    Google Scholar 

  67. Deutsch D. and Josza R., Rapid solution of problems by quantum computation, Proc. Roy. Soc. London A439,553 (1992).

    ADS  Google Scholar 

  68. Haroche S., Brune M., and Raimond J.M., Trapping atoms by the vacuum field in a cavity, Euro. Phys. Lett.14:19 (1991).

    Article  ADS  Google Scholar 

  69. Englert B.G., Schwinger J., Barut A.O. and Scully M.O., Reflecting slow atoms from a micromaser field, Europhys. Lett.14:25 (1991).

    Article  ADS  Google Scholar 

  70. Ivanov D., and Kennedy T.A.B., Photon number measurements with cold atoms, Phys. Rev.A47:566 (1993).

    ADS  Google Scholar 

  71. Cohen-Tannoudji C., Atomic motion in laser light, in: “Fundamental Systems in Quantum Optics, Les Houches Summer School, Session LIII”, Dalibard J., Raimond J.M., and Zinn-Justin J. eds., North Holland, Amsterdam (1992).

    Google Scholar 

  72. Ramsey N.F., “Molecular Beams”, Oxford University Press, New York (1985).

    Google Scholar 

  73. Nussenzveig P., Bernardot F., Brune M., Hare J., Raimond J.M., Haroche S. and Gawlik W., Preparation of high principal quantum numbers circular states of rubidium Phys. Rev.A48:3991 (1993).

    ADS  Google Scholar 

  74. Gross, M. and Liang, Is a circular Rydberg atom stable in a vanishing electric field?, J., Phys. Rev. Lett.57, 3160 (1986).

    Article  ADS  Google Scholar 

  75. Braginsky V.B., and Khalili F.Y., Zh. Eksp. Theor. Fiz.78:1712 (1977) [Quantum singularities of a ponderomotive meter of electromagnetic energy, Sov. Phys. JETP 46:705 (1977)].

    Google Scholar 

  76. LaPorta A., Slusher R.E., and Yurke B., Back-action evading measurements of an optical field using parametric down conversion, Phys. Rev. Lett.62:28 (1989).

    Article  ADS  Google Scholar 

  77. Levenson M.D., Shelby R.M., Reid M., and Walls D.F., Quantum non demolition detection of optical quadrature amplitudes, Phys. Rev. Lett.57:2473 (1986).

    Article  ADS  Google Scholar 

  78. Grangier P., Roch J.F. and Roger G., Observation of backaction-evading measurement of an optical intensity in a three level atomic non-linear system, Phys. Rev. Lett.66:1418 (1991).

    Article  ADS  Google Scholar 

  79. Nagourney W., Sandberg J., and Dehmelt H., Shelved optical electron amplifier: observation of quantum jumps, Phys. Rev.Lett.56:2797 (1986).

    Article  ADS  Google Scholar 

  80. Haroche S., Brune M., and Raimond J.M., Manipulation of optical fields by atomic interferometry: quantum variations on a theme by Young, Appl. Phys.B54:355 (1992).

    ADS  Google Scholar 

  81. Haroche S., Brune M., and Raimond J.M., Measuring photon numbers in a cavity by atomic interferometry: optimizing the convergence procedure, Journal de Physique II, Paris, 2:659 (1992).

    ADS  Google Scholar 

  82. Mermin, N.D., What is wrong with these elements of reality? Phys. Today, 43, 9 (1990).

    Google Scholar 

  83. Mermin N.D., Extreme entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett.65, 1838 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Shor P.W., Algorithms for quantum computation: discrete log and factoring, in Proceedings of the 35 th annual symposium on the foundations of computer science IEEE Computer Society Press, Los Alamitos, CA p. 124 (1994).

    Chapter  Google Scholar 

  85. DiVicenzo D.P., Two-bit gates are universal for quantum computation, Phys. Rev. A 51:1015 (1995).

    Article  ADS  Google Scholar 

  86. Sleator T. and Weinfurter H., Realizable quantum logic gates, Phys. Rev. Lett.74:4087 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. Unruh W.G., Maintaining coherence in quantum computers, Phys. Rev. A, 51:992 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  88. Domokos P., Raimond J.M., Brune M. and Haroche S., Simple cavity-QED two-bit universal quantum logic gate: principle and expected performances, Phys. Rev. A to be published.

    Google Scholar 

  89. Yurke, B. and Stoler, D., Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett.57, 13 (1986);

    Article  ADS  Google Scholar 

  90. Yurke, B., Schleich, W., and Walls, D.F., Quantum superpositions generated by quantum non-demolition measurements, Phys. Rev. A 42, 1703 (1990);

    Article  ADS  Google Scholar 

  91. Milburn, G., Quantum and classical Liouville dynamics of the anharmonic oscillator, Phys. Rev. A 33, 674 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  92. Haroche, S., Brune, M., Raimond, J.M., and Davidovich, L., Mesoscopic quantum coherences in cavity QED, in Fundamentals of Quantum Optics III, ed. Ehlotzky, F., Springer-Verlag, Berlin, (1993).

    Google Scholar 

  93. Dubreuil N., Knight J.C., Leventhal D.K., Sandoghdar V., Hare J. and Lefèvre-Séguin V., Eroded monomode optical fiber for whispering gallery mode excitation in fused silica microspheres, Opt. Lett.20:813 (1995).

    Article  ADS  Google Scholar 

  94. Weiss D.S., Sandoghdar V., Hare J., Lefèvre-Séguin V., Raimond J.M. and Haroche S., Splitting of high Q Mie modes induced by light backscattering in silica microspheres, Optics Lett.to be published.

    Google Scholar 

  95. Knight J.C., Dubreuil N., Sandoghdar V., Hare J., Lefèvre-Séguin V., Raimond J.M. and Haroche S., Mapping whispering gallery modes in microspheres using a near-field probe, Opt. Lett.to be published.

    Google Scholar 

  96. Lu B., Wang Y., Li Y., Lu Y., High order resonance structures in a Nd-doped glass microsphere, Opt. Comm 108:13 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Raimond, J.M. (1996). Basics of Cavity Quantum Electrodynamics. In: Ducloy, M., Bloch, D. (eds) Quantum Optics of Confined Systems. NATO ASI Series, vol 314. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1657-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1657-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7241-0

  • Online ISBN: 978-94-009-1657-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics