Advertisement

Diastolic Function: Anesthesia and Myocardial Ischemia

  • Pierre Foëx
Part of the Developments in Critical Care Medicine and Anesthesiology book series (DCCA, volume 31)

Abstract

Over the past decade, much interest has been focused on diastolic cardiac function because of the realization that alterations of diastolic function may be early markers of coronary heart disease, hypertensive heart disease, and many cardiomyopathies. As many as 40% of patients presenting with cardiac failure may have intact systolic function, implicating diastolic dysfunction as the major cause of failure (1). In addition to ischemia, hypertrophy and pericarditis, left ventricular filling may be impaired because of right ventricular failure associated with bulging of the septum into the cavity of the left ventricle.

Keywords

Sarcoplasmic Reticulum Diastolic Function Coronary Blood Flow Left Ventricular Diastolic Function Atrial Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soufer R, Wohlgelertner D, Vita NA, et al. Intact systolic left ventricular function in clinical congestive heart failure. Am J Cardiol 55:1032–36, 1985PubMedCrossRefGoogle Scholar
  2. 2.
    Morgan JP, Mackinnon R, Briggs M, Gwathney JK. Calcium and cardiac relaxation. In: Diastolic Relaxation of the Heart. Basic Research and Applications for Clinical Cardiology, W Grossman and BH Lorell eds. Martinus Nijhoff, Boston, pp 17–26, 1988Google Scholar
  3. 3.
    Smith VE, Katz AM. Inotropic and lusitropic abnormalities in the genesis of heart failure. Eur Heart J 4 (Suppl A):7–17, 1983PubMedGoogle Scholar
  4. 4.
    Brutsaert DL, Rademackers FS, Suys SU. Triple control of relaxation; implications in cardiac disease. Circulation 64:190–196, 1984CrossRefGoogle Scholar
  5. 5.
    Brutsaert DL, Rademakers FE, Sys SU, Gillebert TC, Housman PR. Analysis of relaxation in the evaluation of ventricular function of the heart. Prog Cardiovasc Dis 28:143–163, 1985PubMedCrossRefGoogle Scholar
  6. 6.
    Lew WY, Rasmussen CM. Influence of nonuniformity on rate of left ventricular pressure fall in the dog. Am J Physiol 256:H222–232, 1989PubMedGoogle Scholar
  7. 7.
    Yellin EL, Nikolic S, Frater RWM. Left ventricular filling dynamics and diastolic function. Prog Cardiovasc Dis 32:247–271, 1990PubMedCrossRefGoogle Scholar
  8. 8.
    Mirsky I, Pasipoularides A. Clinical assessment of diastolic function. Prog Cardiovasc Dis 32:291–318, 1990PubMedCrossRefGoogle Scholar
  9. 9.
    Nikolic S, Yellin EL, Tamura K, Tamura T, Frater RWM. Effect of early diastolic loading on myocardial relaxation in the intact canine left ventricle. Circ Res 66:1217–1226, 1990PubMedGoogle Scholar
  10. 10.
    Ishida Y, Meisner JS, Tsujioka K, et al. Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 74:187–196, 1986PubMedCrossRefGoogle Scholar
  11. 11.
    Louie EK, Edwards-LC. Hypertrophic cardiomyopathy. Prog Cardiovasc Dis 36:275–308, 1994PubMedCrossRefGoogle Scholar
  12. 12.
    Arrighi JA, Dilsizian V, Perrone-Filardi P, et al. Improvement of the age-related impairment in left ventricular diastolic filling with verapamil in the normal human heart. Circulation 90:213–219, 1994PubMedGoogle Scholar
  13. 13.
    Keren G, Meisner JS, Sherez J, Yellin EL, Laniado S. Interrelationship of mid-diastolic mitral valve motion, pulmonary venous flow, and transmitral flow. Circulation 74:36–44, 1986PubMedCrossRefGoogle Scholar
  14. 14.
    Little WC, Downes TR. Clinical evaluation of left ventricular diastolic performance. Prog Cardiovasc Dis 32:273–290, 1990PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuda Y, Toma Y, Ogawa H, et al. Importance of left atrial function in patients with myocardial infarction. Circulation 67:566–571, 1983PubMedCrossRefGoogle Scholar
  16. 16.
    Rahimtoola SH, Ehsani A, Sinno MZ, et al. Left atrial transport function in myocardial infarction: importance of its booster function. Am J Med 59:686–694, 1975PubMedCrossRefGoogle Scholar
  17. 17.
    Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ Res 64:827–852, 1989PubMedGoogle Scholar
  18. 18.
    Lew WYW. Evaluation of left ventricular diastolic function. Circulation 79:1393–1397, 1989PubMedCrossRefGoogle Scholar
  19. 19.
    Weiss JL, Fredericksen JW, Weisfeldt ML. Hemodynamic determinants of the time course of fall in canine left ventricular pressure. J Clin Invest 58:751–760, 1976PubMedCrossRefGoogle Scholar
  20. 20.
    Pagel PS, Kampine JP, Schmeling WT, Warltier DC. Alteration of left ventricular diastolic function by desflurane, isoflurane, and halothane in the chronically instrumented dog with autonomic nervous system blockade. Anesthesiology 74:1103–1114, 1991PubMedCrossRefGoogle Scholar
  21. 21.
    Munoz HR, Marsch SCU, Foëx P. Regional diastolic left ventricular function under inhalation anaesthesia in dogs. Br J Anaesth 74:479P, 1995Google Scholar
  22. 22.
    Pagel PS, Kampine JP, Schmeling WT, Warltier DL. Reversal of volatile anesthetic-induced depression of myocardial contractility by extracellular calcium also enhances left ventricular diastolic function. Anesthesiology 78:141–154,1993PubMedCrossRefGoogle Scholar
  23. 23.
    Puttick RM, Diedericks J, Sear JW, et al. Effect of graded infusion rates of propofol on regional and global left ventricular function in the dog. Br J Anaesth 69:375–381, 1992PubMedCrossRefGoogle Scholar
  24. 24.
    Terrar DA, Victory JGG. Effects of halothane on membrane currents associated with contraction in single myocytes isolated from guinea-pig ventricle. Br J Pharmacol 94:500–508, 1988PubMedGoogle Scholar
  25. 25.
    Terrar DA, Victory JGG. Isoflurane depresses membrane currents associated with contraction in myocytes isolated from guinea-pig ventricle. Anesthesiology 69:742–749, 1988PubMedCrossRefGoogle Scholar
  26. 26.
    Puttick RM, Terrar DA. Effects of propofol and enflurane on action potentials, membrane currents and contraction of guinea-pig isolated ventricular myocytes. Br J Pharmacol 107:559–565, 1992PubMedGoogle Scholar
  27. 27.
    Takahashi H, Terrar DA. Effects of etomidate on whole-cell and single L-type calcium channel currents in guinea-pig isolated ventricular myocytes. Br J Anaesth 73:812–819, 1994PubMedCrossRefGoogle Scholar
  28. 28.
    Doyle RL, Foëx P, Ryder WA, Jones LA. Effects of halothane on left ventricular relaxation and early diastolic coronary blood flow in the dog. Anesthesiology 70:660–666, 1989PubMedCrossRefGoogle Scholar
  29. 29.
    Diedericks J, Leone BJ, Foëx P. Regional differences in left ventricular wall motion in the anesthetized dog. Anesthesiology 70:82–89, 1989PubMedCrossRefGoogle Scholar
  30. 30.
    Sohma A, Foëx P, Ryder WA. Regional distensibility, chamber stiffness, and elastic stiffness constant in halothane and propofol anesthesia. J Cardiothor Vasc Anesth 7:188–194, 1993CrossRefGoogle Scholar
  31. 31.
    Marsch SCU, Wanigasekera VA, Ryder WA, Wong LSS, Foëx P. Graded myocardial ischemia is associated with a decrease in diastolic distensibility of remote non-ischemic myocardium in anesthetized dog. J Am Coll Cardiol 22:899–906, 1993PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer T, Foëx P, Ryder WA. Regional interaction and its effect on patterns of myocardial segmental shortening and lengthening during different models of asynchronous contraction in the dog. Cardiovasc Res 26:476–486, 1992PubMedCrossRefGoogle Scholar
  33. 33.
    Munoz HR, Evans RD, Marsch SCU, Foëx P. Platelet-activating factor does not affect diastolic function in isolated rat hearts. Cardiovasc Res (1995, in press)Google Scholar
  34. 34.
    Marsch SCU, Dalmas S, Philbin DM, Wanigasekera VA, Ryder WA, Wong LSS, Foëx P. Postischemic diastolic dysfunction. J Cardiothor Vase Anesth 8:611–617, 1994CrossRefGoogle Scholar
  35. 35.
    Dalmas S, Wanigasekera VA, Marsch SCU, Ryder WA, Wong LSS, Foëx P. The influence of preload on post-systolic shortening in ischaemic myocardium. Eur J Anaesthesiology 12:127–133, 1995Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Pierre Foëx

There are no affiliations available

Personalised recommendations