Myocardial Stunning: An Overview

  • Dennis T. Mangano
Part of the Developments in Critical Care Medicine and Anesthesiology book series (DCCA, volume 31)


Over the past two decades, we have challenged the belief that transient ischemia is benign with little functional sequelae following resolution of ischemia. The phenomenon of prolonged postischemic contractile dysfunction, or of myocardial stunning, has been developed and is under investigation using multiple experimental and clinical models. Classifications of myocardial stunning have been suggested and include single and multiple reversible ischemic episodes, partially reversible episodes, and global ischemia. More challenging is the understanding of the mechanisms of myocardial stunning, including free radical protection, excitation-contraction uncoupling, altered calcium flux, microvascular dysfunction, and impaired energy production and use. Finally, advances have been made in the clinical arena, including development of new more sensitive technologies to detect dysfunction, and development of potentially important therapies, including free radical scavengers, adenosine-regulating agents, and calcium channel blockers. In this brief overview, we focus on myocardial stunning, including a historical perspective of coronary occlusion, and definition, classification, and clinical implications of myocardial stunning. (J Card Surg 8[Suppl]:204–213, 1993)


Calcium Channel Blocker Coronary Blood Flow Coronary Occlusion Global Ischemia Coronary Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heyndrickx G, Millar R, McRitchie R, et al: Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985,1975PubMedCrossRefGoogle Scholar
  2. 2.
    Hyendrickx G, Baig H, Nellens P, et al: Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 234:H653–H659, 1978Google Scholar
  3. 3.
    Braunwald E, Kloner R: The stunned myocardium: Prolonged postishemic ventricular dysfunction. Circulation 66:1146–1149, 1982PubMedCrossRefGoogle Scholar
  4. 4.
    Braunwald E, Rutherford J: Reversible ischemic left ventricular function: Evidence for the “hibernating myocardium.” (Editorial) J Am Coll Cardiol 8:1467–1470, 1986PubMedCrossRefGoogle Scholar
  5. 5.
    Bolli R: Mechanism of myocardial “stunning.” Circulation 82:723–738, 1990PubMedCrossRefGoogle Scholar
  6. 6.
    Kloner R, Przyklenk K, Patel B: Altered myocardial states: The stunned and hibernating myocardium. Am J Med 86(Suppl 1 A):14–22, 1989PubMedCrossRefGoogle Scholar
  7. 7.
    Chirac P: De Motu Cordis. Adverseria Analytica 121, 1698Google Scholar
  8. 8.
    Porter T: On the results of ligation of the coronary arteries. J Physiol (Lond) 15:121, 1895Google Scholar
  9. 9.
    Herrick J: Clinical features of sudden obstruction of the coronary arteries. J Am Med Assoc 59:2015, 1912Google Scholar
  10. 10.
    Tennant R, Wiggers C: The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361, 1935Google Scholar
  11. 11.
    Ellis S, Henscke C, Sandor T, et al: Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. Am J Cardiol 1:1047–1055, 1983CrossRefGoogle Scholar
  12. 12.
    Puri P: Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. Am J Cardiol 36:244, 1975PubMedCrossRefGoogle Scholar
  13. 13.
    Weiner J, Apstein C, Arthur J, et al: Persistence of myocardial injury following brief periods of coronary occlusion. Cardiovasc Res 10:678–686, 1976PubMedCrossRefGoogle Scholar
  14. 14.
    Wood J, Hanley H, Entman M, et al: Biochemical and morphological correlates of acute experimental myocardial ischemia in the dog. (IV. energy mechanisms during very early ischemia.) Circ Res 44:52, 1979PubMedGoogle Scholar
  15. 15.
    Hess M, Barnhart G, Crute S, et al: Mechanical and biochemical effects of transient myocardial ischemia. J Surg Res 26:175, 1979PubMedCrossRefGoogle Scholar
  16. 16.
    DeBoer F, Ingwal J, Kloner R, et al: Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77:5471, 1980PubMedCrossRefGoogle Scholar
  17. 17.
    Kloner R, Ellis S, Carlson M, et al: Coronary reperfusion for the treatment of acute myocardial infarction: Post-ischemic ventricular dysfunction. Cardiology 70:233–246, 1983PubMedCrossRefGoogle Scholar
  18. 18.
    Mangano D: Perioperative cardiac morbidity. (Review) Anesthesiology 72:153–184, 1990PubMedCrossRefGoogle Scholar
  19. 19.
    Przyklenk K, Patel B, Kloner R: Diastolic abnormalities of postischemic “stunned” myocardium. Am J Cardiol 60:1211–1213, 1987PubMedCrossRefGoogle Scholar
  20. 20.
    Wijns W, Serruys P, Slager C: Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. J Am Coll Cardiol 7:455–463, 1986PubMedCrossRefGoogle Scholar
  21. 21.
    Kloner R, Ellis S, Lange R, et al: Studies of experimental coronary artery reperfusion: Effects of infarct size, myocardial function, biochemistry, ultrastructure, and microvascular damage. Circulation 68(Suppl I):18–15, 1983Google Scholar
  22. 22.
    Ambrosio G, Jacobus W, Bergman C, et al: Preserved high energy phosphate metabolic reserve in globally “stunned” hearts despite reduction of basal ATP content and contractility. J Mol Cell Cardiol 19:953–964, 1987PubMedCrossRefGoogle Scholar
  23. 23.
    Arnold J, Braunwald E, Sandor T, et al: Inotropic stimulation of reperfused myocardium with dopamine: Effects on infarct size and myocardial function. J Am Coll Cardiol 6:1026–1034, 1985PubMedCrossRefGoogle Scholar
  24. 24.
    Jennings R, Reimer K: Factors involved in salvaging ischemic myocardium: Effects of reperfusion of arterial blood. Circulation 68(Suppl 1):125-l-36, 1983Google Scholar
  25. 25.
    Nicklas J, Becker L, Bulkley B: Effects of repeated brief coronary occlusion on regional left ventricular function and dimension in dogs. Am J Cardiol 56:473–478. 1985PubMedCrossRefGoogle Scholar
  26. 26.
    Theroux P, Ross JJ, Franklin D, et al: Coronary arterial reperfusion: III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol 38:599–606, 1976PubMedCrossRefGoogle Scholar
  27. 27.
    Lavallee M, Cox D, Patrick T, et al: Salvage of myocardial function by coronary artery reperfusion 1,2, and 3-hours after occlusion in conscious dogs. Circ Res 1983,53:235–247, 1983Google Scholar
  28. 28.
    Bush L, Buja L, Samowitz W, et al: Recovery of left ventricular segmental function after long-term reperfusion following temporary coronary occlusion in conscious dogs: Comparison of two- and four-hour occlusions. Circ Res 53:248–263, 1983PubMedGoogle Scholar
  29. 29.
    Reimer K, Jennings R: The “wavefront phenomenon” of myocardial ischemic death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644, 1979PubMedGoogle Scholar
  30. 30.
    Taegemeyer H, Roberts A, Raine A: Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol 6:864–870, 1985CrossRefGoogle Scholar
  31. 31.
    Mangano D: Biventricular function after myocardial revascularization in humans: Deterioration and recovery patterns during the first 24 hours. Anesthesiology 62:571–577, 1985PubMedCrossRefGoogle Scholar
  32. 32.
    Brundage B, Massie B, Botvinick E: Improved regional ventricular function after successful surgical revascularization. J Am Coll Cardiol 3:902–908, 1984PubMedCrossRefGoogle Scholar
  33. 33.
    Homans D, Sublett E, Dai X, et al: Persistence of regional left ventricular dysfunction after exercise-induced myocardial ischemia. J Clin Invest 77:66–73,1986PubMedCrossRefGoogle Scholar
  34. 34.
    Robertson W, Fegenbaum H, Armstrong W, et al: Exercise echocardiography: A clinically practical edition in the evaluation of coronary artery disease. J Am Coll Cardiol 2:1085–1091, 1983PubMedCrossRefGoogle Scholar
  35. 35.
    Camici P. Araujo L, Spinks T: Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 74:81–88, 1986PubMedCrossRefGoogle Scholar
  36. 36.
    Myers M, Bolli R, Lekich R., et al: Enhancement of recovery of myocardial function by oxygen-free radical scavengers after reversible regional ischemia. Circulation 72:915–921, 1985PubMedCrossRefGoogle Scholar
  37. 37.
    Jeroudi M, Triani F, Patel B, et al: Effect of superoxide dismutase and catalase, given separately, on myocardial “stunning.” Am J Physiol 259(3):H889–H901, 1990PubMedGoogle Scholar
  38. 38.
    Przyklenk K, Kloner R: Superoxide dismutase plus catalase improved contractile function in the canine model of the “stunned” myocardium. Circ Res 58:148–156, 1986PubMedGoogle Scholar
  39. 39.
    Gross G, Farber N, Hardman H, et al: Beneficial actions of superoxide dismutase and catalase in “stunned” myocardium of dogs. Am J Physiol 250:H372–H377, 1986PubMedGoogle Scholar
  40. 40.
    Charlat M, O’Neill P, Egan J, et al: Evidence for a pathogenetic role of xanthine oxidase in the “stunned” myocardium. Am J Physiol 252:H566–H577, 1987PubMedGoogle Scholar
  41. 41.
    Engler R, Covell J: Granulocytes cause reperfusion ventricular dysfunction after 15-minute ischemia in the dog. Circ Res 61:20–28, 1987PubMedGoogle Scholar
  42. 42.
    O’Neill P, Charlat M, Hartley C, et al: Neutrophil depletion fails to attenuate post-ischemic myocardial dysfunction. (Abstract) Circulation 74 (Suppl II):II–349, 1986Google Scholar
  43. 43.
    Go L, Murry C, Richard V, et al: Myocardial neutrophil accumulation during reperfusion after reversible or irreversible ischemic injury. Am J Physiol 255:H1188–H1198,1988PubMedGoogle Scholar
  44. 44.
    Krause S, Jacobus W, Becker L: Alterations in sarcoplasmic reticulum Ca2+ transport in the post-ischemic “stunned” myocardium. (Abstract) Circulation 74(Suppl II):II–67, 1986Google Scholar
  45. 45.
    Kusuoka HG, Porterfield J, Weisman H, et al: Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79:950–961, 1987PubMedCrossRefGoogle Scholar
  46. 46.
    Kusuoka H, Koretsune Y, Chacko V, et al: Excitation-contraction coupling in postischemic myocardium: Does failure of activator Ca2+ transients underlie stunning? Circ Res 66:1268–1276, 1990PubMedGoogle Scholar
  47. 47.
    Guarnieri T: Direct measurement of (Ca2+) in early and late reperfused myocardium. (Abstract) Circulation 80(Suppl II):II–241, 1989Google Scholar
  48. 48.
    Ito B, Tate H, Kobayashi M, et al: Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 61:834–846, 1987PubMedGoogle Scholar
  49. 49.
    Przyklenk K, Kloner R: Effect of verapamil on postischemic “stunned” myocardium: Importance of the timing of the treatment. J Am Coll Cardiol 11:614–623, 1988PubMedCrossRefGoogle Scholar
  50. 50.
    Taylor A, Golino P, Eckels R, et al: Differential enhancement of postischemic segmental systolic thickening by diltiazem. J Am Coll Cardiol 15:737–747, 1990PubMedCrossRefGoogle Scholar
  51. 51.
    Lamping K, Gross G: Improved recovery of myocardial segment function following a short coronary occlusion in dogs by nicorandil, a potential new antianginal agent, and nifedipine. J Cardio vase Pharmacol 7:158–166, 1985CrossRefGoogle Scholar
  52. 52.
    Przyklenk K, Ghafari G, Eitzman D, et al: Nifedipine administered after reperfusion oblates systolic contractile dysfunction of postischemic “stunned” myocardium. J Am Coll Cardiol 13:1176–1183, 1989PubMedCrossRefGoogle Scholar
  53. 53.
    Krause S, Jacobus W, Becker L: Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned” myocardium. Circ Res 65:526–530, 1989PubMedGoogle Scholar
  54. 54.
    Mercier J, Lando U, Kanmatsuse K, et al: Divergent effects of inotropic stimulation on the ischemic and severely depressed reperfused myocardium. Circulation 66:397–400, 1982PubMedCrossRefGoogle Scholar
  55. 55.
    Ellis S, Wynne J, Braunwald E, et al: Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 107:9–13, 1984CrossRefGoogle Scholar
  56. 56.
    Bolli R, Zhu W, Myers M, et al: Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deterioration. Am J Cardiol 56:964–968, 1985PubMedCrossRefGoogle Scholar
  57. 57.
    Heusch G, Schafer S, Kroger K: Recruitment of inotropic reserve in “stunned” myocardium by the cardiotonic agent AR-L 57. Basic Res Cardiol 83:602–610, 1988PubMedCrossRefGoogle Scholar
  58. 58.
    Kloner R, Alker K: Effect of streptokinase on intramyocardial hemorrhage, infarct size, and the no-reflow phenomenon during coronary reperfusion. Circulation 70:513–521, 1984PubMedCrossRefGoogle Scholar
  59. 59.
    Engler R, Schmid-Schoenbein G, Pavelec R: Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Physiol 111:98–111, 1983Google Scholar
  60. 60.
    McCord J: Are free radicals a major culprit? In Hearse DJ, Yellen DN (eds): Therapeutic Approaches to Myocardial Infarct Size Limitation. New York, Raven Press, pp. 209–218, 1984Google Scholar
  61. 61.
    Romson J, Hook B, Kunkel S, et al: Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023, 1983PubMedCrossRefGoogle Scholar
  62. 62.
    Becker L, Levine J, DiPaula A, et al: Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 7:580–589, 1986PubMedCrossRefGoogle Scholar
  63. 63.
    Greenfield R, Swain J: Disruption of myofibrillar energy use: Dual mechanisms that may contribute to post-ischemic dysfunction in stunned myocardium. Circ Res 60:283–289, 1987PubMedGoogle Scholar
  64. 64.
    Nixon J, Brown C, Smitherman T: Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography. Circulation 65:1497–1503, 1982PubMedCrossRefGoogle Scholar
  65. 65.
    Anderson J, Marshall H, Bray B: A randomized trial of intracoronary streptokinase in the treatment of acute myocardial infarction. N Engl J Med 308:1313–1318, 1983Google Scholar
  66. 66.
    Stack R, Phillips HI, Grierson D: Functional improvement of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction. J Clin Invest 72:84–95, 1983PubMedCrossRefGoogle Scholar
  67. 67.
    Reduto L, Freund G, Gaeta J, et al: Coronary artery reperfusion in acute myocardial infarction: Beneficial effects of intracoronary streptokinase on left ventricular salvage and performance. Am Heart J 102:1168–1177, 1981PubMedCrossRefGoogle Scholar
  68. 68.
    Patel B, Kloner R: Analysis of reported randomized trials of steptokinase therapy for acute myocardial infarction in the 1980’s. Am J Cardiol 59:501–504, 1987PubMedCrossRefGoogle Scholar
  69. 69.
    Mangano D, London M, Tubau J, et al: Dipyridamole thallium-201 scintigraphy as a preoperative screening test. Circulation 84:493–502, 1991PubMedGoogle Scholar
  70. 70.
    Knight A, Hollenberg M, London M, et al: Perioperative myocardial ischemia: Importance of the preoperative ischemic pattern. Anesthesiology 68:681–688, 1988PubMedCrossRefGoogle Scholar
  71. 71.
    Smith R, Leung J, Mangano D, et al: Postoperative myocardial ischemia in patients undergoing coronary artery bypass graft surgery. Anesthesiology 74:464–473, 1991PubMedCrossRefGoogle Scholar
  72. 72.
    Siliciano D, Mangano D: Postoperative myocardial ischemia: Mechanisms and therapies. In Estafanous F (ed): Opioids in Anesthesia. Boston, Butterworth Publishers, pp. 164–178, 1990Google Scholar
  73. 73.
    Ballantyne C, Verani M, Short H, et al: Delayed recovery of severely “stunned” myocardium with the support of a left ventricular assist device after coronary artery bypass graft surgery. J Am Coll Cardiol 10:710–712, 1987PubMedCrossRefGoogle Scholar
  74. 74.
    Mathias P, Kenn N, Blevins R, et al: Coronary vasospasm as a cause of stunned myocardium. Am Heart J 113:383–385Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Dennis T. Mangano

There are no affiliations available

Personalised recommendations