Principles of Hemodynamic Management

  • Robert N. Sladen
Part of the Developments in Critical Care Medicine and Anesthesiology book series (DCCA, volume 31)


Measurement of cardiac output provides a global index of oxygen delivery, if arterial oxygen content is optimal. However, one or two caveats apply. Abnormal distribution of peripheral blood flow, such as occurs in sepsis (distributive shock), leads to inadequate oxygen supply to affected tissues despite a quantitatively normal cardiac output. Regional blood flow alterations that may occur in shock are not reflected in the simple mathematical calculation of DO2. Nevertheless, a decrease in total cardiac output leads to a decrease in DO2, so a consideration of factors that affect cardiac output are germane to any discussion of shock.


Cardiac Output Systemic Vascular Resistance Hemorrhagic Shock Inotropic Agent Coronary Perfusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frank O: Zur Dynamik des Herzmuskels. Z Biol 32:370–447, 1895Google Scholar
  2. 2.
    Patterson SW, Starling EH: On the mechanical factors which determine the output of the ventricles. J Physiol 48:357–379, 1914PubMedGoogle Scholar
  3. 3.
    Berne RM, Levy MN: Regulation of the heartbeat. In: Berne RM, Levy MN (ed): Physiology, 2nd Ed. CV Mosby Co, St. Louis, 1988. p463Google Scholar
  4. 4.
    Sands SD, Winegard S: Treppe and total calcium content of the frog ventricle. Am J Physiol. 218:908–10, 1970PubMedGoogle Scholar
  5. 5.
    Bodenheimer MM, Banka VS, Heifant RH: Effect of heart rate on zonal tension and ischemia following coronary occlusion: optimal rate for Treppe versus ischemia. Cardiovasc Res. 10:336–40, 1976PubMedCrossRefGoogle Scholar
  6. 6.
    Zoll PM, Zoll RH, Falk RH, Clinton JE, Eitel DR, Antman EM. External noninvasive temporary cardiac pacing: clinical trials, Circulation 71:937–944, 1985PubMedCrossRefGoogle Scholar
  7. 7.
    Hankeln K, Rädel C, Beez M, Laniewski P, Bohmert F. Comparison of hydroxyethyl starch and lactated Ringer’s solution on hemodynamics and oxygen transport of critically ill patients in prospective crossover studies. Crit Care Med 17:133–135, 1989PubMedCrossRefGoogle Scholar
  8. 8.
    Alving BM, Hojima Y, Pisano JJ, Mason BL, Buckingham RE, Mozen MM, Finlayson JS. Hypotension associated with prekallikrein activator (Hageman-factor fragments) in plasma protein fraction. New Engl J Med 299:66–70, 1978PubMedCrossRefGoogle Scholar
  9. 9.
    Hein L-G, Albrecht M, Dworschak M, Frey L, Brückner UB. Long-term observation following traumatic-hemorrhagic shock in the dog: a comparison of crystalloid vs. colloidal fluids. Circ Shock 26:353–364, 1988PubMedGoogle Scholar
  10. 10.
    Nakayama S, Sibley L, Gunther RA, Holcroft JW, Kramer GC. Small-volume resuscitation with hypertonic saline (2,400 mOsm/liter) during hemorrhagic shock. Circ Shock 13:149–159, 1984PubMedGoogle Scholar
  11. 11.
    Chudnofsky CR, Dronen SC, Syverud SA, Zink BJ, Hedges JR. Intravenous fluid therapy in the prehospital management of hemorrhagic shock: improved outcome with hypertonic saline/6% dextran 70 in a swine model. Am J Emerg Med 7:357–363, 1989PubMedCrossRefGoogle Scholar
  12. 12.
    Gross D, Landau EH, Klin B, Krausz MM. Treatment of uncontrolled hemorrhagic shock with hypertonic saline solution. Surg Gynec Obstet 170:106–112, 1990PubMedGoogle Scholar
  13. 13.
    Lindner A, Cutler RE, Goodman WG. Synergism of dopamine plus furosemide in preventing acute renal failure in the dog. Kidney Int 16:158–166, 1979.PubMedCrossRefGoogle Scholar
  14. 14.
    Lucas CE, Zito JG, Carter KM, Cortez A, Stebner FC. Questionable value of furosemide in preventing renal failure. Surgery 82:314–320, 1977Google Scholar
  15. 15.
    Lawson DH, Gray JMB, Henry DA, Tilstone WJ. Continuous infusion of frusemide in refractory oedema. BMJ 2:476, 1978PubMedCrossRefGoogle Scholar
  16. 16.
    Copeland JG, Campbell DW, Plachtka JR, Salamon NW, Larson DF. Diuresis with continuous infusion of furosemide after cardiac surgery. Amer J Surg 146:796–799, 1983PubMedCrossRefGoogle Scholar
  17. 17.
    Krasna MJ, Scott GE, Scholz PM, Spotnitz AJ, Mackenzie JW, Penn F. Postoperative enhancement of urinary output in patients with acute renal failure using continuous furosemide therapy. Chest 89:294–295, 1986PubMedCrossRefGoogle Scholar
  18. 18.
    Schwartz LB, Bissell MG, Murphy M, Gewertz BL. Renal effects of dopamine in vascular surgical patients. J Vase Surg 8:367–374, 1988Google Scholar
  19. 19.
    Murphy MB. The therapeutic role of drugs acting on cardiovascular dopamine receptors. J Cardiothoracic Anesth 4:23–26, 1990CrossRefGoogle Scholar
  20. 20.
    Schaer GL, Fink MP, Parrillo JE. Norepinephrine alone versus norepinephrine plus low-dose dopamine: enhanced renal blood flow with combination pressor therapy. Crit Care Med 13:492–496,1985PubMedCrossRefGoogle Scholar
  21. 21.
    Chiolero R, Borgeta A and Fisher A. Postoperative arrhythmias and risk factors after open heart surgery. Thorac Cardiovasc Surgeon 1991;39:81–84CrossRefGoogle Scholar
  22. 22.
    Stratton MA. Use of nitrates in patients with acute myocardial infarction. Clin Pharm 3:32–39, 1984PubMedGoogle Scholar
  23. 23.
    Borer JS, Redwood DR, Levitt B, et al. Reduction in myocardial ischemia with nitroglycerin or nitroglycerin plus phenylephrine administered during acute myocardial infarction. N Engl J Med 293:1008–1012, 1975PubMedCrossRefGoogle Scholar
  24. 24.
    Epstein SE, Borer JS, Kent KM, Redwood DR, Goldstein RE, Levitt B. Protection of ischemic myocardium by nitroglycerin: experimental and clinical results. Circulation 53, Suppl 1:191–198, 1976Google Scholar
  25. 25.
    Fabioto A: Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 245:C1–4, 1983Google Scholar
  26. 26.
    Colucci WS, Wright RF, Braunwald E: New positive inotropic agents in the treatment of congestive heart failure: mechanisms of action of recent clinical developments: (first of two parts). N Eng J Med. 314:290–99, 1986CrossRefGoogle Scholar
  27. 27.
    Bruckner R, Meyer W, Mugge A, Schmitz W, Scholz H: Alpha-adrenoreceptor-mediated positive inotropic effect of norepinephrine in isolated human ventricular myocardium. Eur J Pharm. 99-345–7, 1984CrossRefGoogle Scholar
  28. 28.
    Sharpey-Schafer EP, Ginsburg J: Humoral agents and venous tone. Effects of catecholamines, 5 — hydroxytryptamine, histamine and nitrites. Lancet. 2:1337, 1962PubMedCrossRefGoogle Scholar
  29. 29.
    Goldberg LI: The dopamine vascular receptor: New areas for biochemical pharmacologists. Biochem Pharmacol. 24:651, 1975PubMedCrossRefGoogle Scholar
  30. 30.
    Aubier M, Murciano D, Menu Y, Boczkowski J: Dopamine effects on diaphragmatic strength during acute respiratory failure in chronic obstructive pulmonary disease. Ann Int Med. 110:17–23, 1989PubMedGoogle Scholar
  31. 31.
    Freyschuss U, Hjemdahl P, Juhlin-Dannfelt A, Linde B: Cardiovascular and metabolic responses to low dose adrenaline infusion: an invasive study in humans. Clin Sci 70:199–206, 1986PubMedGoogle Scholar
  32. 32.
    Royster RL, Butterworth JF, Prielipp RC, et al. A randomized, blinded, placebo-controlled evaluation of calcium chloride and epinephrine for inotropic support after emergence from cardiopulmonary bypass. Anesth Analg 74: 3–13, 1992PubMedCrossRefGoogle Scholar
  33. 33.
    Royster RL, Butterworth JFt, Prielipp RC, et al. Combined inotropic effects of amrinone and epinephrine after cardiopulmonary bypass in humans. Anesth Analg 77(4): 662–72, 1993PubMedCrossRefGoogle Scholar
  34. 34.
    Majerus TC, Dasta JF, Bauman JL, Danziger LH, Ruffolo RR. Dobutamine; ten years later. Pharmacotherapy 9:245–259, 1989PubMedGoogle Scholar
  35. 35.
    Fowler MB, Alderman EL, Oesterle SN et al. Dobutamine and dopamine after cardiac surgery: greater augmentation of myocardial blood flow with dobutamine. Circulation 70:1103–1111, 1984Google Scholar
  36. 36.
    Smith GW, O’Connor SE: A symposium: Focus on heart failure -Current experiences in basic research and clinical studies on dopexamine hydrochloride (Dopacard ®): An introduction to the pharmacologic properties of Dopacard (dopexamine hydrochloride). Am J Card. 62:9C–17C, 1988PubMedCrossRefGoogle Scholar
  37. 37.
    Baumann G, Felix SB, Filcek S: Congestive heart failure: usefulness of dopexamine hydrochloride versus dobutamine in chronic congestive heart failure and effects on hemodynamics and urine output. Am J Card. 65:748–54, 1990PubMedCrossRefGoogle Scholar
  38. 38.
    Bairn D: Effects of amrinone on myocardial energetics in severe congestive heart failure. Am J Cardiol. 56:16B, 1985Google Scholar
  39. 39.
    Bailey JM, Levy JH, Rogers HG, et al. Pharmacokinetics of amrinone during cardiac surgery. Anesthesiology 75: 961–968, 1991PubMedCrossRefGoogle Scholar
  40. 40.
    Levy JH, Ramsay J, Bailey JM: Pharmacokinetics and pharmacodynamics of phosphodiesterase-III inhibitors. J Cardiothoracic Anesth 4, Suppl 5: 7–11, 1990CrossRefGoogle Scholar
  41. 41.
    Feneck RO and the European Multicentre Milrinone Trial Group: Intravenous milrinone following cardiac surgery: I. Effects of bolus infusion followed by variable dose maintenance infusion. J Cardiothoracic Vase Anesth 6: 554–562, 1992CrossRefGoogle Scholar
  42. 42.
    Boldt J, Moosdorf R, Hempelmann G. Enoximone treatment of impaired myocardial function during cardiac surgery: combined effects with epinephrine. J Cardiothoracic Anesth 4:462–468, 1990CrossRefGoogle Scholar
  43. 43.
    Axelrod RJ, De Marco T, Dae M, Botvinick EH, Chaterjee K. Hemodynamic and clinical evaluation of piroximone, a new inotrope-vasodilator agent, in severe congestive heart failure. J Am Coll Cardiol 9:1124–1130, 1987PubMedCrossRefGoogle Scholar
  44. 44.
    Lvoff R, Wilcken D: Glucagon in heart failure and in cardiogenic shock: experience in 50 patients. Circulation. 45:534–42, 1972PubMedGoogle Scholar
  45. 45.
    Baumann G, Felix B, Riess G, Loher U, Ludwig L, Blomer H: Effective stimulation of cardiac contractility and myocardial metabolism by impromidine and dimaprit—two new H2-agonist compounds—in the surviving catecholamine -insensitive myocardium after coronary occlusion. J Cardiovasc Pharmacol. 4:542–53, 1982PubMedCrossRefGoogle Scholar
  46. 46.
    Linderer T, Biamino G, Bruggeman T, Pweslin K, Schroder R: Hemodynamic effects of forskolin, a new drug with combined inotropic and vasodilating properties. J Am Coll Cardiol. 3:562, 1984Google Scholar
  47. 47.
    Matsue S, Murakami E, Takekoshi N, Emoto J, Matoba M: Hemodynamic effects of dibutyryl cyclic AMP in congestive heart failure. Am J Cardiol. 51:1364–8, 1983CrossRefGoogle Scholar
  48. 48.
    Sladen RN, Rosenthal MH. Specific afterload reduction with parenteral hydralazine following cardiac surgery. J Thorac Cardiovas Surg 78:195–202, 1979Google Scholar
  49. 49.
    Reicher-Reiss H: Calcium antagonists in heart failure. Eur Heart J 9 Suppl H:101–4, 1988PubMedGoogle Scholar
  50. 50.
    Eicher J, Morelon P, Chalopin J, Tanter Y, Louis P, Rifle G: Acute renal failure during nifedipine therapy in a patient with congestive heart failure. Crit Care Med. 16:1163–4, 1988PubMedCrossRefGoogle Scholar
  51. 51.
    Turlapaty P, Vary R, Kaplan JA. Nicardipine, a new intravenous calcium antagonist: a review of its pharmacology, pharmacokinetics, and perioperative applications. J Cardiothoracic Anesth 3:344–355, 1989CrossRefGoogle Scholar
  52. 52.
    Miller R, Awan N, Maxwell KS, et al: Sustained reduction of cardiac impedance and preload in congestive heart failure with the antihypertensive vasodilator, prazosin. N Eng J Med 297:303, 1977CrossRefGoogle Scholar
  53. 53.
    Flynn K, Coughlan MG, Phelan DM, Luke D, Neligan M, Wood AE: Letters to the editor: Intravenous captopril in acute heart failure. Lancet. l(8578):173–74, 1988CrossRefGoogle Scholar
  54. 54.
    Lipkin D, Frenneaux M, Maseri A: Letters to the Editor: Beneficial effect of captopril in cardiogenic shock. Lancet. 2(8554):327, 1987PubMedCrossRefGoogle Scholar
  55. 55.
    Corbalan R, Jalil J, Chamorro G, Casanegra P, Valenzuela P: Effects of vaptopril versus milrinone therapy in modulating the adrenergic nervous system response to exercise in congestive heart failure. Am J Cardiol. 65:644–9, 1990PubMedCrossRefGoogle Scholar
  56. 56.
    Trachete G, Lefer AM: Mechanism of the protective effect of angiotensin-converting enzyme inhibition in hemorrhagic shock. Proc Soc Exp Biol Med. 162:54–7, 1979Google Scholar
  57. 57.
    Cleland J, Dargle H, Hodsman G, et. al. Captopril in heart failure. A double blind controlled trial. Br Heart J. 52:530–5, 1984PubMedCrossRefGoogle Scholar
  58. 58.
    Lefer AM: The pathophysiologic role of myocardial depressant factor as a mediator of circulatory shock. Klin-Wochenschr. 60:713–716, 1982PubMedCrossRefGoogle Scholar
  59. 59.
    Dzau VJ. Renal effects of angiotensin-converting enzyme inhibition in cardiac failure. Am J Kidney Dis 10(Suppl l):74–80, 1987PubMedGoogle Scholar
  60. 60.
    Kaplan JA, Guffin AV. The inodilators: an expanding role in the perioperative period. J Cardiothoracic Anesth 4:27–31, 1990CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Robert N. Sladen

There are no affiliations available

Personalised recommendations