Rotifera VII pp 279-290 | Cite as

Disturbance and population dynamics of rotifers in bed sediments

Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 109)


Rotifers inhabiting the sediment surface and the hyporheic interstitial of a gravel stream were investigated between October 1991 and October 1992. At the sediment surface, samples were taken with a modified Hess sampler at five randomly chosen sites and at roughly weekly intervals. In the hyporheic interstitial, samples were collected using standpipe traps permanently installed at two sites at four sediment depths (0–40 cm), and every fifteen days. The distribution of five rotifer species revealed different temporal and spatial patterns. Two species, Notholca foliacea (Ehrb.) and Notholca squamula (O.F.M.) co-occurred having their temporal peaks at the beginning of summer and in autumn. Cephalodella gibba (Ehrb.) and Proales theodora (Gosse) occurred throughout the year, while Parencentrum longipes (Wulf.) showed a clear peak during the spring only in the hyporheic interstitial. The effect of variables such as water level, surface discharge and variation of the groundwater level was tested upon the densities of each species. Despite the spring spate, the species are able to persist due to the presence of low-flow refuge habitats or the dispersion into deeper layer of the hyporheic interstitial.

Key words

Benthic Rotifera disturbance hyporheic interstitial population dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulton, A. J., H. M. Valett & S. G. Fischer, 1992. Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Arch. Hydrobiol. 125: 37–61.Google Scholar
  2. Braoini, M. G. & M. Gottardi, 1979.1 Rotiferi dell’Adige: Confronto tra il popolamento interstiziale e quello bentico-perifitico. Boll. Museo Civ. St. Nat. Verona 6: 187–219.Google Scholar
  3. Bretschko, G., 1991. The limnology of a low order alpine gravel stream (Ritrodat-Lunz study area, Austria). Verh. int. Ver. Limnol. 24: 1908–1912.Google Scholar
  4. Bretschko, G. & W. Klemens, 1986: Quantitative methods and aspects in the study of the interstitial fauna of running waters. Stygologia 2: 279–316.Google Scholar
  5. Burger, A., 1948. Studies on the moss dwelling bdelloids (Rotifera) of Eastern Massachusetts. Trans, am. microsc. Soc. 57: 111–142.CrossRefGoogle Scholar
  6. Donner, J., 1964. Die Rotatorien-Synusien submerser Makrophyten der Donau bei Wien und mehrerer Alpenbäche. Arch. Hydrobiol. Suppl. 27: 227–324.Google Scholar
  7. Donner, J., 1970. Die Rädertierbestände submerser Moose der Salzach und anderer Wasser-Biotope des Flussgebietes. Arch. Hydrobiol. Suppl. 34: 109–254.Google Scholar
  8. Donner, J., 1972. Die Rädertierbestände submerser Moose und weiterer Merotope im Bereich der Staueräume der Donau and der deutsch-österreichischen Landesgrenze. Arch. Hydrobiol. Suppl. 36: 109–254.Google Scholar
  9. Donner, J., 1975. Seltene und auffallende Sessile und Notomatidae Rotatorien aus dem Schilfgürtel des Neusiedler Sees. Sitz.-Ber. Österr. Akad. Wiss.Math.-Naturw. Kl., Abt. I 183 (4–7): 131–148.Google Scholar
  10. Evans, W. A., 1984. Seasonal abundances of the psammic rotifers of a physically controlled stream. Hydrobiologia 108: 105–114.CrossRefGoogle Scholar
  11. Kasimir, G. Microbial biomass and activities in a second order mountain brook. 5th International Worshop on the Measurement of Microbial Activities in the Carbon Cycle in Aquatic Environments, University of Copenhagen, Denmark, (in press)Google Scholar
  12. Krebs, C. J., 1989. Ecological Methodology. Harper & Row Publishers, New York.Google Scholar
  13. Madalinsky, K., 1961. Moss dwelling Rotifers of Tatra streams. Pol. Arch. Hydrobiol. 9: 243–263.Google Scholar
  14. Moser, H., 1992. Oberflächeneintrag und Verfrachtung organischer Substanzen bei einem Gebirgsbach. Ph.D. Thesis Vienna University, 137 pp.Google Scholar
  15. Palmer, M. A., 1991. Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J. N. Am. Benthol. Soc. 9: 17–25.CrossRefGoogle Scholar
  16. Palmer, M. A., A. E. Bely & K. E. Berg, 1992a. Response of invertebrates to lotie disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.CrossRefGoogle Scholar
  17. Palmer, M. A., P. Arensburger & A. P. Martin, 1992b. The role of patch dynamics in explaining the population persistence of hyporheic biota: a numerical simulation model. In J. A. Stanford & J. J. Simons (eds), Proceedings of the First International Conference on Groundwater Ecology. Am. Wat. Ressour. Ass. Maryland: 119–131.Google Scholar
  18. Panek, K. L. J., 1991. Dispersiondynamik des zoobenthos in den bettsedimenten eines gebirgsbaches. Ph.D. thesis University of Vienna, 190 pp.Google Scholar
  19. Pawlowski, L. K., 1958. Wroti(Rotatoria)rzeki Grabi. Czesc I Faunistyczna. Lodzkie Tow. Nauk. Sectio. III. 50: 1–442.Google Scholar
  20. Schmid, P. E., 1994. Is prey selectivity by predatory Chironomidae a random process. Verh. int. Ver. Limnol. 25: 1656–1660.Google Scholar
  21. Schmid-Araya, J. M., 1993a. Benthic Rotifera inhabiting the bed sediments of a mountain gravel stream. J. Biol. Stn. Lunz 14: 75–101.Google Scholar
  22. Schmid-Araya, J. M., 1993b. Spatial distribution and population dynamics of a benthic rotifer, Embata laticeps (Murray) (Rotifera, Bdelloidea) in the bed sediments of a gravel brook. Freshwat. Biol. 30: 395–408.CrossRefGoogle Scholar
  23. Schmid-Araya, J. M., 1994a. Spatial and temporal distribution of micro-meiofaunal groups in an alpine gravel stream. Verh. int. Ver. Limnol. 25: 1649–1655.Google Scholar
  24. Schmid-Araya, J. M., 1994b. The temporal and spatial distribution of benthic microfauna in the bed sediments of a gravel stream. Limnol. Oceanogr. 39: 1813–1821.CrossRefGoogle Scholar
  25. Schmid-Araya, J. M., 1994c. Temporal and spatial dynamics of meiofaunal assemblages in the hyporheic interstitial of a gravel stream. Proceedings of the International Conference on Groundwater/Surface Water Ecotones, Lyon, France. Cambridge University Press (in press).Google Scholar
  26. Schwank, K. P., 1988. Differentiation of the coenoses of Helminthes and Annelida in exposed lotic microhabitats in mountain streams. Arch. Hydrobiol. 193: 535–543.Google Scholar
  27. Schwoerbel, J., 1965. Bemerkungen über die interstitielle hyporheis-che Fauna einiger Bäche der südlichen Vogesen. Vie Milieu 1C: 475–485.Google Scholar
  28. Sedell, J. R., G. H. Reeves, R. F. Hauer, J. A. Stanford & P. Hawkins, 1990. Role of refugia in recovery from disturbances: modern fragmented and disconnected rivers systems. Envir. Mgmt 14: 711–724.CrossRefGoogle Scholar
  29. Williams, D. D., 1984. The hyporheic zone as habitat for aquatic insects and associated arthropods. In V. H. Resh & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishing Company, New York: 430–455.Google Scholar
  30. Williams, D. D. & H. B.N. Hyness, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol. 4: 233–256.CrossRefGoogle Scholar
  31. Wulfert, K., 1936. Beiträge zur Kenntnis der Rädertierfauna Deutschlands. Teil II. Arch. Hydrobiol. 30: 401–437.Google Scholar
  32. Zullini, A. & C. Ricci, 1980. Bdelloid rotifers and nematodes in a small Italian stream. — Freshwat. Biol. 10: 62–72.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  1. 1.Biological Station Lunz, Institute of LimnologyAustrian Academy of SciencesLunz am SeeAustria

Personalised recommendations