Skip to main content

Oxygen consumption rate in rotifers

  • Conference paper
Rotifera VII

Part of the book series: Developments in Hydrobiology ((DIHY,volume 109))

  • 169 Accesses

Abstract

The oxygen consumption rate (OCR) is a cumulative index of metabolic losses during aerobic metabolism. The generalized relationship of oxygen consumption rate (R, nl O2 ind-1 h-1) and dry body mass (M, μg) for rotifers is described by the equation: R = 9.15M0.716. The level of rotifer metabolism is slightly lower than that of multicellular Poikilothermic animals. Differences of OCR values in ontogenesis are substantial. Embryos and senile individuals are characterized by minimal OCR values. The OCR of oviparous females in the beginning of reproduction exceeds 2–3 times OCR values of juveniles. Differences in oxygen consumption intensity (OCI) are not so essential. OCR depends on food concentration. An increase of food concentration from 1.4 to 7.0 μg dry mass ml-1 resulted in Brachionus calyciflorus in an OCR escalation of 2.5 times at 30°C, and 0.5 times at 25°C. Maximal OCR values occur at food concentration close to the saturation concentration for population growth rate. An exponential equation is adequate to describe R-t dependence for animals long-term adapted to different constant temperatures (2 < Q10 < 3). Acclimation effects observed during sharp temperature changes are determined by peculiarities of compensation reactions in species and separate populations. The formation of a zone of relative temperature independence of OCR (Q10 → 1) at fluctuating temperature is observed. It is necessary to study enzymatic activities parallel to OCR and OCI measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, R. S. K., P. Calow, P. J. W. Olive & D. W. Golding, 1992. The invertebrates. Moskva, Mir, 583 pp. (In Russian).

    Google Scholar 

  • Berges, I. A., I. C. Roff & I. S. Ballantyne, 1993. Enzymatic indices of respiration and ammonia excretion: relationships to body size and food levels. J. Plankton Res. 15: 239–254.

    Article  CAS  Google Scholar 

  • Belyatskaya, Yu. S., 1959. Use of diver microrespirometer for measurements of respiration in planktonic animals. DAN BSSR 3: 315–317. (In Russian).

    CAS  Google Scholar 

  • Berzins, B. & B. Pejler, 1989. Rotifer occurence in relation to oxygen content. Hydrobiologia 183: 165–172.

    Article  CAS  Google Scholar 

  • Birky, C. W., Jr., R. Z. Bignami & M. J. Bentfeld, 1967. Nuclear and cytoplasmic DNA synthesis in adult and embryonic rotifers. Biol. Bull. 133: 502–509.

    Article  PubMed  Google Scholar 

  • Bohrer, R. N. & W. Lampert, 1988. Simultaneous measurement of the effect of food concentration on assimilation and respiration in Daphnia magna Straus. Funct. Ecol. 2: 463–471.

    Article  Google Scholar 

  • Clement, P. & E. Wurdak, 1991. Rotifera. Microsc. Anat. Invert. 4: 219–297.

    Google Scholar 

  • Doohan, M., 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia 13: 351–362.

    Article  Google Scholar 

  • Enesco, H. E. & D. F. Mahoney, 1981. Age related decrease in nuclear and nucleolar size in hypodermal cells of the rotifer. Exp. Geront. 16: 41–45.

    Article  CAS  Google Scholar 

  • Epp, R. W. & W. M. Lewis, Jr., 1980. Metabolic uniformity over the environmental temperature range in Brachionus plicatilis (Rotifera). Hydrobiologia 73 (Dev. Hydrobiol. 1): 145–147.

    Article  Google Scholar 

  • Epp, R. W. & W. M. Lewis, Jr., 1984. Cost and speed of locomotion for rotifers. Oecologia 61: 289–292.

    Article  Google Scholar 

  • Esparcia, A., M. Serra & M. R. Miracle, 1992. Relationships between oxygen concentration and patterns of energy metabolism in the rotifer Brachionus plicatilis. Comp. Biochem. Physiol. 103B: 357–362.

    CAS  Google Scholar 

  • Galkovskaya, G. A., 1963. On the utilization of food for growth and conditions of highest yield in rotatoria Brachionus calyciflorus. Zool. Zh. 42: 506–512. (In Russian).

    Google Scholar 

  • Galkovskaya, G. A., 1965. Planktonic rotifers and their role in productivity of reservoirs. Avtoreferat diss. kand. biol. nauk. Minsk, 19 pp. (In Russian).

    Google Scholar 

  • Galkovskaya, G. A., 1968. Production of planktonic rotifers. In G. G. Vinberg (ed), The methods for the estimation of production of aquatic animals. Minsk, Vysh. Shkola: 135–141. (In Russian).

    Google Scholar 

  • Galkovskaya, G. A., 1980. Oxygen consumption rate of rotifers from natural populations. Vesti AN BSSR, ser. bijal. navuk 6: 114–116 (In Russian).

    Google Scholar 

  • Galkovskaya, G. A., 1987. Planktonic rotifers and temperature. Hydrobiologia 147 (Dev. Hydrobiol. 42): 307–317.

    Article  Google Scholar 

  • Galkovskaya, G. A., 1991. Trophic conditionality of oxygen consumption for rotifers. Vesti AN BSSR, ser. bijal. navuk 5: 115–117. (In Russian).

    Google Scholar 

  • Galkovskaya, G. A., 1993. The population growth rate of rotifers in food concentration gradient. Vesti AN BSSR, ser. bijal. navuk 2: 95–99. (In Russian).

    Google Scholar 

  • Galkovskaya, G. A. & G. G. Vinberg, 1979. The relationship of oxygen consumption rate and rotifer body mass. In G. G. Vinberg (ed), General studies in aquatic systems. Leningrad, Nauka: 21–25 (In Russian).

    Google Scholar 

  • Galkovskaya, G. A. & I. F. Mityanina, 1989. Morphological structure and functional patterns of Keratella cochlearis (Gosse) populations in stratified lakes. Hydrobiologia 186/187 (Dev. Hydrobiol. 52): 119–128.

    Google Scholar 

  • Galkovskaya, G. A., J. Ejsmont-Karabin & V. N. Evdokimov, 1987. Relative protein metabolism in rotifer Brachionus calyciflorus Pallas in relation to temperature. Int. Revue ges. Hydrobiol. 72, N1: 59–69.

    Article  CAS  Google Scholar 

  • Gilbert, J. J., 1992. Rotifera. In Adiyodi, K. G. & R. G. Adiyodi (eds), Reproduction biology of invertebrates. Oxford & IBH Publishing Co. 4A: 179–199.

    Google Scholar 

  • Haney, J. F, M. Brauer & G. Nurnberg, 1986. Feeding and eges-tion rates of individual Zooplankton using Cerenkov counting. Hydrobiologia 141 (Dev. Hydrobiol. 36): 165–174.

    Article  Google Scholar 

  • Hemmingsen, A. M., 1960. Energy metabolism as related to body size and respiratory surfaces and its evolution. Rep. Steno mem. hosp. Nordisk insulin lab., Copenhagen 9: 7–110.

    CAS  Google Scholar 

  • Hirata, H. & S. Yamasaki, 1987. Effect of feeding on the respiration rate of the rotifer Brachionus plicatilis. Hydrobiologia 147 (Dev. Hydrobiol. 42): 283–288.

    Article  CAS  Google Scholar 

  • Hochachka, P. W. & G. N. Somero, 1988. Biochemical adaptation. Moskva, Mir, 568 pp. (In Russian).

    Google Scholar 

  • Jones, P. A. & J. J. Gilbert, 1977. Polymorphism and polyploidy in the rotifer Asplanchna sieboldi: Relative nuclear DNA contents in tissues of saccate and companulate females. J. Exp. Zool. 201: 163–168.

    Article  CAS  Google Scholar 

  • Kamlyuk, L. V., 1964. Polarography method for measuring oxygen consumption rate of aquatic animals. Nauch. Dokl. Vysh. Shkoly, biol. nauki 3: 49–53. (In Russian).

    Google Scholar 

  • Kovalchuk, A.A., 1992. Respiration and production of Rotatoria. Gidrobiol. Zh. 28: 11–18. (In Russian).

    CAS  Google Scholar 

  • Krylova, A. G., 1971. On gas exchange in Rotatoria. Gidrobiol. Zh. 7: 56–70. (In Russian).

    Google Scholar 

  • Lampert, W., 1986. Response of the respiratory rate of Daphnia magna to changing food conditions. Oecologia 70: 495–501.

    Article  Google Scholar 

  • Lehninger, A. L., 1985. Principles of biochemistry, Moskva, Mir, 731 pp.

    Google Scholar 

  • Leimeroth, N., 1980. Respiration of different stages and energy budgets of juvenile Brachionus calyciflorus Pallas. Hydrobiologia 73 (Dev. Hydrobiol. 1): 195–197.

    Article  Google Scholar 

  • Lubzens, E., A. Marko & A. Tiets, 1985. De novo synthesis of fatty acids in the rotifer Brachionus plicatilis. Aquaculture 47: 27–37.

    Article  CAS  Google Scholar 

  • Miracle, M. R. & M. T. Alfonso, 1993. Rotifer vertical distributions in a meromictic basin of lake Banyoles (Spain). Hydrobiologia 255/256 (Dev. Hydrobiol. 83): 371–380.

    Google Scholar 

  • Miracle, M. R. & E. Vicente, 1983. Vertical distribution and rotifer concentrations in the chemocline of meromictic lakes. Hydrobiologia 104 (Dev. Hydrobiol. 14): 259–267.

    Article  CAS  Google Scholar 

  • Mityanina, I. F., 1985. Glycogen content in the rotifer Brachionus calyciflorus Pallas. Vesti AN BSSR, ser. bijal. navuk 1: 109–111. (In Russian).

    Google Scholar 

  • Newell, R. C. & V. I. Pye, 1970a. Seasonal changes in the effect of temperature on the oxygen consumption of the winkle Littorina littorea (L.) and the mussel Mytilus edulis L. Comp. Biochem. Physiol. A 34: 367–383.

    Google Scholar 

  • Newell, R. C. & V. I. Pye, 1970b. The influence of thermal acclimation in Littorina littorea (L.) and Mitylus edulis L. Comp. Biochem. Physiol. 34: 385–397.

    Google Scholar 

  • Opalinski, K. W. & R. Z. Klekowski, 1989. Oxygen consumption in Macrotrachela musculosa and Trichotria truncata (Rotatoria) from the High Arctic. Polar Research 7: 133–137.

    Article  Google Scholar 

  • Opalinski, K. W. & R. Z. Klekowski, 1992. Metabolic adaptations to temperature in Spitsbergen invertebrates. Landscape, Life World and Man in High Arctic 7: 299–306.

    Google Scholar 

  • Packard, T. T. & P. B. Taylor, 1968. The relationship between succinate dehydrogenase activity and oxygen consumption in the brine shrimp Artemia salina. Limnol. Oceanogr. 13: 552–555.

    Article  Google Scholar 

  • Pilarska, J., 1977a. Eco-physiological studies on Brachionus rubens Ehrbg. (Rotatoria). II. Production and respiration. Pol. Arch. Hydrobiol. 24:329–241.

    Google Scholar 

  • Pilarska, J., 1977b. Eco-physiological studies on Brachionus rubens Ehrbg. (Rotatoria). III. Energy balances. Pol. Arch. Hydrobiol. 24: 343–354.

    Google Scholar 

  • Pourriot, R. & M. Deluzarches, 1970. Sur la consommation d’oxygene par les rotiferes. Ann. limnol. 6: 229–248.

    Article  Google Scholar 

  • Ruttner-Kolisko, A., 1980. The abundance and distribution of Filinia terminalis in various types of lakes as related to temperature, oxygen, and food. Hydrobiologia 73 (Dev. Hydrobiol. 1): 169–175.

    Article  Google Scholar 

  • Scott, A. P. & S. M. Baynes, 1978. Effect of algal diet and temperature on the rotifer Brachionus plicatilis. Aquaculture 14: 247–260.

    Article  CAS  Google Scholar 

  • Siefken, M. & K. B. Armitage, 1968. Seasonal variation in metabolism and organic nutrients in three Diaptomus (Crustacea, Copepoda). Comp. Bichem. Physiol. 24: 591–609.

    Article  CAS  Google Scholar 

  • Simakov, Yu. G., 1977. The distribution of DNA and RNA in organs of rotifer Philodina roseola Nauch. Dokl. Vysh. Shkoly, biol. nauki 1: 69–72. (In Russian).

    Google Scholar 

  • Starkweather, P. L., 1987. Rotifer energetics, In T. J. Pandian & S. J. Vernberg (eds), Animal energetics. Academic Press, New York: 159–183.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1985. Body size, food concentration and population growth in planktonic rotifers. Ecology 66: 1151–1159.

    Article  Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology 68: 181–187.

    Article  Google Scholar 

  • Sullivan, K. M. & G. N. Somero, 1983. Size and diet-related variation in enzyme activity and tissue composition in sable-fish, Anoplopoma fimbria. Biol. Bull. 164: 315–326.

    Article  CAS  Google Scholar 

  • Taylor, W. D. & D. R. S. Lean, 1981. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish, aquat. Sci 38: 1316–1321.

    Article  CAS  Google Scholar 

  • Vinberg, G. G., 1937. Respiratory intensity in the Rotatoria Anuraea aculeata Ehrbg. Bull. Eksp. Biol, i Med. 4: 464–466. (In Russian).

    Google Scholar 

  • Vinberg, G. G., 1956. The intensity of respiratory metabolism and food requirements of fishes. Minsk, Belgosuniversitet, 254 pp. (In Russian).

    Google Scholar 

  • Vinberg, G.G., 1976. Dependence of energy metabolism on the body mass in aquatic poikilotherms. Zh. Obshch. Biol. 37: 56–70. (In Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Ejsmont-Karabin R. M. Pontin

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this paper

Cite this paper

Galkovskaya, G.A. (1995). Oxygen consumption rate in rotifers. In: Ejsmont-Karabin, J., Pontin, R.M. (eds) Rotifera VII. Developments in Hydrobiology, vol 109. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1583-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1583-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7208-3

  • Online ISBN: 978-94-009-1583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics