Skip to main content

Abstract

Owing to the high heats of reaction between refractory metals and nitrogen, refractory metal nitrides can be synthesized within seconds via self-propagating high-temperature synthesis (SHS) reactions. The combustion reactions utilize pelletized or loosely packed metal systems, and are initiated by an external heat source. The high initial porosity of loosely packed powders guarantees the completion of reaction and the achievement of high yield under relatively low nitrogen pressures. The reaction product is a very fine powder which can be easily densified.

Detailed experimental studies on these gas-solid combustion reactions reveal the dependence of combustion and propagation characteristics, like front propagation velocity, combustion temperature and degree of conversion, on operating parameters like nitrogen pressure, particle size and morphology of the reactant metal and dilution of the gas and solid phases. From these studies the optimum synthesis conditions for a variety of nitrides are determined and information about the mechanisms of several gas-solid combustion reactions is obtained. With the aid of combustion theory, the apparent values of activation energy for several nitridation reactions are calculated from measured combustion characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Merzhanov, V.M. Shkiro and LP. Borovinskaya. USSR Patent No. 255221, (1967).

    Google Scholar 

  2. H.C.R. Moissan. Hebd. Seances Acad. Sci., 115, 1034 (1892).

    Google Scholar 

  3. H.C.R. Moissan. Hebd. Seances Acad. Sci., 120, 290 (1895).

    CAS  Google Scholar 

  4. H.C.R. Moissan. Hebd. Seances Acad. Sci., 142, 673 (1906).

    CAS  Google Scholar 

  5. W. Muthmann and K. Kraft. Liebigs Ann. Chem., 325, 261 (1902).

    Article  CAS  Google Scholar 

  6. A.G. Merzhanov, LP. Borovinskaya and YE. Volodin. Dokl. Akad. Nauk SSSR, 206(4), 905 (1972).

    CAS  Google Scholar 

  7. A.G. Merzhanov, A.K. Filonenko and LP. Borovinskaya. Dokl. Akad Nauk SSSR, 208(4), 892 (1973).

    CAS  Google Scholar 

  8. A.K. Filonenko and V.I. Vershenikov. Fiz. Gor. Vzr., 11, 353 (1975).

    CAS  Google Scholar 

  9. S. Kumar. Ph.D. dissertation, SUNY/Buffalo, (1988).

    Google Scholar 

  10. LP. Borovinskaya and V.E. Loryan. Poroshk. Metall, 11(191), 42 (1978).

    Google Scholar 

  11. S.K. Dolukhanyan, M.D. Nerseyan, A.B. Nalbandyan, LP. Borovinskaya and A.G. Merzhanov. Dokl. Akad. Nauk SSSR, 231(3), 675 (1977).

    Google Scholar 

  12. LP. Borovinskaya and V.E. Loryan. Dokl. Akad Nauk SSSR, 231(4), 911 (1976).

    CAS  Google Scholar 

  13. A.G. Merzhanov and E.N. Rumanov. Izv. Akad. Nauk SSSU, Met., 3, 188 (1977).

    Google Scholar 

  14. U.I. Gol’dshleger and V.I. Rozenbad. Fiz. Gor. Vzr., 13(6), 918 (1977).

    Google Scholar 

  15. LP. Borovinskaya and A.N. Pityulin. Fiz. Gor. Vzr., 14(1) 137.

    Google Scholar 

  16. A.N. Pityulin, V.A. Shcherbakov, LP. Borovinskaya and A.G. Merzhanov. Fiz. Gor. Vzr., 15(4), 9 (1979).

    CAS  Google Scholar 

  17. J.B. Holt and P.D. Kingman. Materials Science Research. R.F. Davis, H. Palmour III and R.L. Porter, Eds. (Plenum Press, New York, 1984), 17, 167.

    Google Scholar 

  18. Z. Munir. Am. Ceram. Soc. Bull., 67(2), 342 (1988).

    CAS  Google Scholar 

  19. Z.A. Munir and J.B. Holt. J. Mater. Sci., 22, 710 (1987).

    Article  CAS  Google Scholar 

  20. Z.A. Munir, S. Deevi and M. Eslamloo-Grami. High Temp.-High Press., 20, 19 (1988).

    CAS  Google Scholar 

  21. Z.A. Munir and U. Anselmi-Tamburini. Mater. Sci. Rep., 3, 277 (1989).

    Article  CAS  Google Scholar 

  22. K.Y. Hirao, Y. Miyamoto and M. Koizumi. J. Am. Ceram. Soc., 69(4), 60 (1986).

    Google Scholar 

  23. K.Y. Hirao, Y. Miyamoto and M. Koizumi. Adv. Ceram. Mater., 2(4), 780 (1987).

    CAS  Google Scholar 

  24. L. Hirao, Y. Miyamoto and M. Koizumi. Advances in Ceramics, 21, Ceramic Powder Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Hlavacek, V., Puszynski, J. (1996). Combustion synthesis of transition metal nitrides. In: Oyama, S.T. (eds) The Chemistry of Transition Metal Carbides and Nitrides. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1565-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1565-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7199-4

  • Online ISBN: 978-94-009-1565-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics