Potash pp 1-80 | Cite as

Origin of Potash Deposits

  • Donald E. Garrett

Abstract

Large, deeply buried potash deposits are found in many marine evaporite and other formations throughout the world, and occur in every continent and most geological epochs from the Cambrian to the present (Sonnenfeld 1985). The predominant mineral form is sylvite (KCl), found in almost every deposit with halite (NaCl) to form the mixture called sylvinite. In most occurrences fairly pure sylvinite exists with essentially no soluble sulfate or other salts, and in some zones of many deposits carnallite (KCl · MgCl · 6H2O) is also found, occasionally being massive and similarly crystallized with halite nearly free from other soluble salts. In only a few deposits do soluble sulfate salts occur with the potash, such as zones of the Zechstein Basin where “hartsalz” (sylvite with kieserite, MgSO4 · H2O, or anhydrite and halite) is common; double salts such as zones in Sicily and Ethiopia where kainite (KCl · MgSO4 · 2.75H2O) is predominant; and in areas of Carlsbad, New Mexico where langbeinite (K2SO4 · 2MgSO4) occurs extensively. In some deposits various other potash double salts are also present in trace to minor quantities, as well as occasionally quite extensive formations of the insoluble mineral poly halite, K2SO4 · MgSO4 · 2CaSO4 · 2H2O. In a few locations carnallite and some sylvinite occurs with halite and tachyhydrite (CaCl2 · 2MgCl2 · 12H2O.)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abitz, R.; Myers, J.; Drez, P.; Deal, D. 1990. “Geochemistry of Salado Formation Brines Recovered from the Waste Isolation Pilot Plant (WIPP) Repository”, Proc. Symp. Waste Manage. (Waste Manage.’90), Albuquerque, NM, V. 2, pp. 881–882.Google Scholar
  2. Adams, S. S. 1969. “Bromine in the Salado Formation, Carlsbad Potash District, New Mexico”, New Mex. Bur. Mines and Min. Resources Bull. 93, 122 p.Google Scholar
  3. Apollonov, V.N. 1986. “Br and Rb in Sylvite of the Verkhne-Kama Deposit and Some Problems of Genesis”, Moscow Univ. Geol. Bull., V. 41, No. 2, pp. 41–47.Google Scholar
  4. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Kali u. Steinsalz V.1, No. 2, pp. 3–17 (1953);Google Scholar
  5. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Kali u. Steinsalz V. 1, No. 7, pp. 3–22 (1954);Google Scholar
  6. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Kali u. Steinsalz V. 1, No. 11, pp. 18–32 (1955);Google Scholar
  7. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Kali u. Steinsalz V. 2, pp 181–200 (1958);Google Scholar
  8. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Kali u. Steinsalz V. 2, pp. 395–405 (1959);Google Scholar
  9. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Kali u. Steinsalz V. 3, pp. 15–30 (1960);Google Scholar
  10. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Kali u. Steinsalz V. 3, pp. 85–97 (1960);Google Scholar
  11. Autenrieth, H. 1953–1960. Various Phase Chemistry Articles, Naturwissenschaften, V. 45, pp. 362–363 (1958).Google Scholar
  12. Azizov, A. I. 1974. “Supergene Potassium as a Factor in the Formation of Potash Deposits”, Acad. Sci., USSR, Dokl., Earth Sci. Sect., V. 209, No. 1–6, pp. 212–215 (April).Google Scholar
  13. Baadsgaard, H. 1987. “Rb-Sr and K-Ca Isotope Systematics in Minerals from Potassium Horizons in the Prairie Evaporite Formation, Saskatchewan, Canada”, Geochem. Geol. (Isotope Geoscience Sect.), V. 66, pp. 1–15.Google Scholar
  14. Baadsgaard, H.; Dodson, M. H. 1964. “Potassium-Argon Ages of Sedimentary and Pyroclastic Rocks”, The Phanerozoic Time Scale, Geol. Soc. London, Q.J., V. 120 Suppl., pp. 119–127.Google Scholar
  15. Baar, C. A. 1966. “Bromine Investigations on Eastern Canada Salt Deposits”, Second Symp. on Salt, No. Ohio Geol. Soc., pp. 276–292.Google Scholar
  16. Barbieri, M.; Penta, A. 1968. “Geochemistry of the Miocene Evaporite Series in San Cataldo, Sicily”, Period. Mineral., V. 37, No. 3, pp. 777–806.Google Scholar
  17. Baseggio, G. 1974. “The Composition of Sea Water and its Concentrates”, Fourth Symposium on Salt, No. Ohio Geol. Soc., V. 2, pp. 351–358.Google Scholar
  18. Bilonizhka, P. M. 1970. “Bromine Content in Salt Minerals of Eastern Carpathians Potassium Deposits”, Vop. Mineral. Osad. Obrazov., No. 8, pp. 126–132.Google Scholar
  19. Bloch, M. R.; Scherb, J. 1953. “On the Cl/Br Ratio and the Distribution of Br Ions in Liquids and Solids During Evaporation of Bromide-Containing Solutions”, Bull. Res. Council Israel, V. 3, pp. 151–158.Google Scholar
  20. Borchert, H. 1969. “Principles of Oceanic Salt Deposition and Metamorphism”, Geol. Soc. Am. Bull., V. 80, pp. 821–864 (May).Google Scholar
  21. Borchert, H. 1972. “Secondary Replacement Processes in Salt and Potash Deposits of Oceanic Origin”, Unesco, Earth Sci., V. 7, pp. 61–68.Google Scholar
  22. Borchert, H.; Muir, R. O. 1964. Salt Deposits, D. Van Nostrand Co., Princeton, N.J., 338 p.Google Scholar
  23. Borisenkov, V. I. et al. 1980. “The Distribution of Rubidium Between Kainite, Langbeinite and Brine In a Marine Salt Deposition Basin”, Geochem. Int., V. 17, No. 3, pp. 66–71.Google Scholar
  24. Borstel, L. E.; Knipping, B. 1991. “Der Stoffbestand Von Fluid Inclusions Als Kriteruem Fur Die Entstechung Mariner Salzgesteine”, Kali’91, 14p.Google Scholar
  25. Braitsch, O. 1966. “Bromine and Rubidium as Indicators of Environment During Sylvite and Carnallite Deposition of the Upper Rhine Valley Evaporites”, Second Symp. on Salt, No. Ohio Geol. Soc., pp. 293–301.Google Scholar
  26. Braitsch, O. 1971. Salt Deposits, Springer-Verlag, New York, 297 p.Google Scholar
  27. Brantley, S. L. et al. 1984. “Geochemistry of a Modern Marine Evaporite: Bocana de Virrila, Peru”, J. Sed. Petrol., V. 54, No. 2, pp. 447–462 (June).Google Scholar
  28. Bredehoeft, J. D. et al. 1963. “Possible Mechanism for Concentration of Brines in Subsurface Formations”, Bull. Am. Assoc. Petrol. Geol., V. 47, No. 2, pp. 257–269 (Feb.).Google Scholar
  29. Briggs, L. I. 1958. “Evaporite Facies”, J. Sediment. Petrol., V. 28, No. 1, pp. 46–56.Google Scholar
  30. Brookins, D. G.; Kruger, H. W.; Bills, J. M. 1985. “Rb-Sr and K-Ar Analyses of Evaporite Minerals from Southeastern New Mexico”, Isochron/West, No. 43, pp. 11–12 (August).Google Scholar
  31. Brookins, D. G.; Lambert, 1987. “Radiometric Dating of Ochoan (Permian) Evaporites, WIPP Site, Delaware Basin, New Mexico”, Matr. Res. Soc. Symp. Proc, V. 84; Sci. Basis Nucl. Waste Mgt. 10, pp. 771–780.Google Scholar
  32. Brookins, D. G.; Register, J. K. 1981. “Potassium-Argon and Neutron Activation Analyses Studies of Polyhalite Near the WIPP Site”, SAND Rept. 81–7071, 35 p.; Geochim. Cosmochim. Acta, V. 44, pp. 635–637 (1980).Google Scholar
  33. Chemical & Engineering News 1965. “Chemistry and the Oceans”, American Chemical Society, 48p.Google Scholar
  34. Chipley, D.; Kyser, T.K.; Danyluk, J. 1990. “Fluid Flow Events in the Elk Point Basin of Western Canada as Recorded in Evaporite Minerals”, Summary of Investigations, Saskatchewan Geological Survey, Misc. Rept. 90–4, pp. 211–217.Google Scholar
  35. Dellwig, L. F. 1955. “Origin of the Salina Salt of Michigan”, J. Sediment. Petrol., V. 25, pp. 83–110.Google Scholar
  36. Dellwig, L. F.; Evans, R. 1969. “Depositional Processes in Salina Salt of Michigan, Ohio and New York”, Amer. Assoc., of Petrol. Geol. Bull., V. 53, pp. 949–956 (April).Google Scholar
  37. Dryer, R. M. et al. 1949. “Liquid Inclusions in Halite as a Guide to Geologic Thermometry”, Amer. Mineralogist, V. 34, pp. 26–34.Google Scholar
  38. Egleson, G. C.; Querio, C. W. 1969. “Variations in the Composition of Brine from the Sylvania Formation Near Midland, Michigan”, Environ. Sci. and Tech., V. 3, No. 4, pp. 367–371 (April).Google Scholar
  39. Fabricius, J. 1983. “Studies of Fluid Inclusions in Halite and Euhedral Quartz Crystals from Salt Domes in the Norwegian-Danish Basin”, Sixth Int. Symp. on Salt, The Salt Inst., V. 1, pp. 247–255.Google Scholar
  40. Garrett, D. E. 1967. “Factors in the Design of Solar Salt Plants—Part IV Byproduct Chemical Recovery”, Third Symposium on Salt, No. Ohio Geol. Soc., V. 2, pp. 63-69.Google Scholar
  41. Garrett, D. E. 1968. “Sebkha el Melah, Chott Djerid, Tunisia”, Personal Communication.Google Scholar
  42. Grrett, D. E. 1970. “The Chemistry and Origin of Potash Salts”, Third Symposium on Salt, No. Ohio Geol. Soc., V. 1, pp. 211–222.Google Scholar
  43. Garrett, D. E. 1975. “The Conversion of Carnallite into Large KCl Crystals”, U.S. Patent 3,895,920.Google Scholar
  44. Garrett, D. E. 1977. “Energy Production from Solar Ponds”, U.S. Patent 4,063,419.Google Scholar
  45. Garrett, D. E. 1980. “By-Product Recovery from Solar Salt Operations”, Fifth Int. Symp. on Salt, No. Ohio Geol. Soc., V. 2, pp. 281–293.Google Scholar
  46. Goldsmith, L. H. 1969. “Concentration of Potash Salts in Saline Basins”, Am. Assoc. Petrol. Geol. Bull., V. 53, No. 4, pp. 790–797 (April).Google Scholar
  47. Graf, D. L. 1982. “Chemical Osmosis, Reverse Chemical Osmosis, and the Origin of Subsurface Brines”, Geochim. et Cosmochim. Acta, V. 46, pp. 1432–1448.Google Scholar
  48. Hardie, L. A. 1990. “The Role of Rifting and Hydrothermal Calcium Chloride Brines in the Origin of Potash Evaporites: An Hypothesis”, Am. J. Sci., V. 290, No. 1, pp. 43–106.Google Scholar
  49. Hardie, L. A.; Lowenstein, T. K.; Spencer, R. J. 1983. “The Problem of Distinguishing Between Primary and Secondary Features in Evaporites”, Sixth Int. Symp. on Salt, The Salt Inst., V. 1, pp. 11–39.Google Scholar
  50. Hardie, C. E. et al. 1980. “Evaporation of Seawater: Calculated Mineral Sequences”, Science, V. 208, pp. 498–500 (May 2).Google Scholar
  51. Hartzell, W. G. 1963. “Liquid Inclusions in Halite”, B. Sci. Thesis, Univ. of Saskatch., Saskatoon Can.Google Scholar
  52. Harville, D. G.; Fritz, S. J. 1986. “Modes of Diagenesis Responsible for Observed Succession of Potash Evaporites in the Salado Formation, Delaware Basin, New Mexico”, J. Sediment. Petrol., V. 56, No. 5, pp. 648–656 (Sept.).Google Scholar
  53. Herrmann, A. G. 1972. “Bromine Distribution Coefficients for Halite Precipitated from Modern Sea Water Under Natural Conditions”, Contr. Mineral. Petrol., V. 37, No. 3, pp. 249–252.Google Scholar
  54. Herrmann, A. G. 1980. “Methodical Investigations on the Origin of Brines in Salt and Potash Mines”, Fifth Symp. on Salt, V. 1, pp. 91–96;Google Scholar
  55. Herrmann, A. G. 1980 “Brominde Distribution Between Halite and NaCl-saturated Sea Water”, Chem. Geol., V. 28, pp. 171–177.Google Scholar
  56. Hite, R. J. 1983. “The Sulfate Problem in Marine Evaporites”, Sixth International Symposium on Salt, V. 1, The Salt Inst., pp. 217–230.Google Scholar
  57. Holser, W. T. 1963. “Chemistry of Brine Inclusion in Permean Salt from Hutchison, Kansas”, First Symp. on Salt, V. 1, No. Ohio Geol. Soc., pp. 86–95.Google Scholar
  58. Holser, W. T. 1966. “Bromide Geochemistry of Salt Rocks”, Second Symposium on Salt, V. 1, No. Ohio Geol. Soc., pp. 248–275.Google Scholar
  59. Holser, W. T. 1979. “Mineralogy of Evaporites”, Marine Minerals, Burns, R. G. (Ed.), Min. Soc. Amer., Short Course Notes, V. 6, pp. 211–294 (Nov.).Google Scholar
  60. Huff, G. F.; Wampler, J. M. 1990. “K-Ar Geochemistry of Carnallite from Salt Cycle Six of the Paradox Formation in Utah”, Chem. Geol. (Isotope Geosci. Sect.), V. 80, pp. 309–318.Google Scholar
  61. Kinsman, D. J. 1966. “Supertidal Diagenesis of Carbonate and Non-carbonate Sediments in Arid Regions”, S.E.P.M. Annual Meeting, St. Louis, MO (April).Google Scholar
  62. Knauth, L. P.; Beeunas, M. A. 1986. “Isotope Geochemistry of Fluid Inclusions in Permian Halite with Implications for the Isotopic History of Ocean Water and the Origin of Saline Formation Waters”, Geochim. Cosmochim. Acta, V. 50, pp. 419–433.Google Scholar
  63. Koczy, F. F. 1966. “Sea Water”, Int. Sci. and Technol., pp. 52–65 (Dec).Google Scholar
  64. Koehler, G. D.; Kyser, J. K.; Danyluk, J. 1990. “Stable Isotope Evidence of the Petrogenesis of Carnallite in the Middle Devonian Prairie Evaporite Formation, Saskatchewan”, Summary of Investigations, Misc. Report 90–4, Sask. Geol. Survey, pp. 218–222.Google Scholar
  65. Korenevskii, S. M. 1989. “Substitution and Depletion Zones of Potassium-Magnesium Salt Deposits”, Lithology and Mineral Resources (USSR), V. 24, No. 1, pp. 50–63.Google Scholar
  66. Kramer, J. R. 1965. “History of Sea Water; Constant Temperature-Pressure Equilibrium Models Compared to Liquid Inclusion Analyses”, Geochim. Cosmochim. Acta, V. 29, pp. 921–945.Google Scholar
  67. Kuhn, R., 1955. “Bromine in Salt and Potash Deposits”, Kali u. Steinsalz, V. 1, No. 9, pp. 3–16.Google Scholar
  68. Kuhn, R. 1968. “Geochemistry of the German Potash Deposits”, Geol. Soc. Amer. Spec. Paper 88, pp. 427–304.Google Scholar
  69. Kuhn, R. 1972. “Combined Evaluation of Br and Rb Contents for the Genetic Characterization of Carnallite and Sylvite Rocks”, Unesco, Geology of Saline Deposits, pp. 77–89.Google Scholar
  70. Landes, K. K. 1962. “Origin of Salt Deposits”, First Symposium on Salt, No. Ohio Geol. Soc., V. 1, pp. 3–9.Google Scholar
  71. Lippolt, H. J.; Raczek, I. 1979. “Rinneite Dating of Episodic Events in Potash Salt Deposits”, J. Geophys., V. 46, No. 2, pp. 225–228.Google Scholar
  72. Lowenstein, T. K.; Spencer, R. J. 1990. “Syndepositional Origin of Potash Eva-porites: Petrographic and Fluid Inclusion Evidence”, Am. J. Sci., V. 290, No. 1, pp. 1–42.Google Scholar
  73. Lowenstein, J. K.; Spencer, R. J.; Pengxi, Z. 1989. “Origin of Ancient Potash Evaporites: Clues from the Modern Nonmarine Qaidam Basin of Western China”, Science, V. 245, No. 4922, pp. 1090–1092.Google Scholar
  74. Malykh, A. V.; Geletii, N. K. 1988. “Structural-Tectonic Features in Sylvinite Areas of the Nepa (USSR) Potash Deposit”, Sov. Geol., V. 6, pp. 30–32 (in Russian).Google Scholar
  75. Matthews, R. D.; Egleson, G. C. 1970. “Origin and Implications of Mid-Basin Facies in the Salina Salt of Michigan”, Fourth Symp. on Salt., V. 1, No. Ohio Geol. Soc., pp. 15–34.Google Scholar
  76. Mayhew, E. J.; Heylmun, E. B. 1966. “Complex Salts and Brines of the Paradox Basin”, Second Symp. on Salt, V. 1, No. Ohio Geol. Soc., pp. 221–235.Google Scholar
  77. McCulloch, D. S. 1959. “Vacuole Disappearance Temperatures of Laboratory-Grown Hopper Halite Crystals”, J. Geophys. Res., V. 64, No. 7, pp. 849–854 (July).Google Scholar
  78. McIntire, W. L. 1968. “Effect of Temperature on the Partition Coefficient of Rubidium Between Sylvite Crystals and Aqueous Solutions”, Geol. Soc. Amer. Spec. Paper 88, pp. 505–524.Google Scholar
  79. Obradovich, J. D. et al. 1982. “K-Ar and K-Ca Dating of Sylvite From the Late Permian Salado Formation, New Mexico”, Fifth Int. Conf. on Geochem., Cosmochron., Isotope Geol., Nikko Nat. Park, Japan, pp. 283–284 (June 27-July 2).Google Scholar
  80. Ortiz, L. R.; Cabo, F. O. 1982. “The Saline (Potash) Formation of the Navarra Basin (Upper Eocene, Spain). Petrology”, Rev. del Inst. de Invest. Geol. Disput. Prov. Univ. de Barcelona, V. 35, pp. 71–121.Google Scholar
  81. Ortiz, L. R.; Mur, J. P. 1984. “Geochemical Characteristics of the Potassium Salt Formation of Navarra (Upper Eocene); Comparison with the Catalan Potassic Basin”, Acta Geologica Hispanica, V. 19, pp. 81–95.Google Scholar
  82. Osichkina, R. G. 1978. “Rb and Cs Levels in Late Jurasaic Salt Beds in Southern Central Asia in Relation to Conditions of Formation”, Geochem. Int., V. 5, No. 3, pp. 168–173.Google Scholar
  83. Petrichenko, O. I., 1979. Fluid Inclusion Research, Roedder, E. (Ed.), V. 12, U. of Mich. Press, Ann Arbor, pp. 214–274.Google Scholar
  84. Petrova, N. S. 1973. “Partition of Rb Between Carnallite and Solution”; “Sylvite and Solution”, Geochem. Int., V. 10, No. 3, pp. 709–713;Google Scholar
  85. Petrova, N. S. 1973. “Partition of Rb Between Carnallite and Solution”; “Sylvite and Solution”, Geochem. Int., V. 10, No. 2, pp. 450–455.Google Scholar
  86. Pierre, C. 1983. “Polyhalite Replacement After Gypsum at Ojo de Liebre Lagoon (Baja California, Mexico); An Early Diagenesis by Mixing of Marine Brines and Continental Waters”, Sixth Salt Symposium, V. 1, The Salt Inst., pp. 257–265.Google Scholar
  87. Ramberti, L. 1980. “Potash Salt Deposits of Sicily”, Boll. Delia Assoc. Mineraria Subalpina, V. 17, No. 2, pp. 327–353.Google Scholar
  88. Raup, O. B. 1966. “Bromine Distribution in Some Halite Rocks of the Paradox Member, Hermosa Formation in Utah”, Second Symp. on Salt, No. Ohio Geol. Soc., pp. 236–247.Google Scholar
  89. Raup, O. B. 1970. “Brine Mixing: An Additional Mechanism for Formation of Basin Evaporaites”, Am. Assoc. Petrol. Geol. Bull., V. 54, No. 12, pp. 2246–2259 (Dec).Google Scholar
  90. Rempe, N. J. 1982. “Langbeinite in Potash Deposits”, New Mexico Bur. Mines, Mineral Resources Circular 182, pp. 23–26.Google Scholar
  91. Richter-Bernburg, G. 1972. “Sedimentological Problems in Saline Deposits”, Unesco, Geology of Saline Deposits, pp. 33–37.Google Scholar
  92. Riley, J. P.; Skirrow, G. 1965. Chemical Oceanography, V. 1, 121 p.Google Scholar
  93. Roedder, E. 1979. “Fluid Inclusion Research”, V. 12, Univ. of Michigan Press, pp. 214–274.Google Scholar
  94. Roedder, E. 1984. “The Fluids in Salt”, American Mineralogist, V. 69, pp. 413–439.Google Scholar
  95. Schock, H. H.; Puchlet, H. R. 1970. “Distribution of Rb and Cs in Potassium Salts-Experimental and Analytical Investigations”, Third Symp. on Salt, No. Ohio Geol. Soc., V. 1, pp. 232–238.Google Scholar
  96. Schwerdtner, W. M. 1964. “Genesis of Potash Rocks in the Middle Devonian Prarie Evaporite Formation, Saskatchewan”, Geol. Soc. Am. Bull., V. 79, pp. 1273–1294;Google Scholar
  97. Schwerdtner, W. M. 1964. “Genesis of Potash Rocks in the Middle Devonian Prarie Evaporite Formation, Saskatchewan”, Bull. Am. Soc. Pet. Geol., V. 48, No. 7, pp. 1103–1115 (July).Google Scholar
  98. Schwerdtner, W. M.; Wardlaw, N. C. 1963. “Geochemistry of Bromine in Some Salt Rocks of the Prarie Evaporite Formation of Saskatchewan”, First Symposium on Salt, No. Ohio Geol. Soc., pp. 240–246.Google Scholar
  99. Shearman, D. J. 1983. “Syndepositional and Late Diagenetic Alteration of Primary Gypsum to Anhydrite”, Sixth Int. Symp on Salt, V. 1, The Salt Inst., pp. 41-50.Google Scholar
  100. Smith, F. G. W. 1974. Handbook of Marine Science, V. 1, CRC Press, Cleveland, Ohio, 627p.Google Scholar
  101. Sonnenfeld, P. 1984. Brines and Evaporites, Academic Press, Montreal, Canada, 613 p.Google Scholar
  102. Sonnenfeld, P. 1985. “Occurrence of Potash Beds Within Evaporite Basins”, Salts & Brines’85, Ed. Schlitt, W. J., Soc. Min. Eng., Am. Inst. Min. Met. Petr. Eng., NY, pp. 113–117.Google Scholar
  103. Spencer, R. J. 1983. “The Role of Pore Fluids in Evaporitic Basins”, Sixth Int. Symp. on Salt, V. 1, The Salt Inst., pp. 231–245.Google Scholar
  104. Stein, C. L.; Krumhansl, J. L. 1988. “A Model for the Evolution of Brines in Salt from the Lower Salado Formation, Southeastern New Mexico”, Geochim. et Cosmochim. Acta, V. 52, pp. 1037–1046.Google Scholar
  105. Stewart, F. H. 1956. “Replacements Involving Early Carnallite in the Potassium-Bearing Evaporites of Yorkshire”, Mineral Mag., V. 31, pp. 127–135.Google Scholar
  106. Stirling, J. A.; Roulston, B.; Waugh, D. C. 1988. “Preliminary Results of Bromine Distribution and Partitioning in Salt Deposits at Sussex, New Brunswick”, Maritime Sediments and Atlantic Geology, V. 24, No. 2, pp. 213–214.Google Scholar
  107. Stoessel, R. K.; Carpenter, A. B. 1986. “Stoichiometric Saturation Tests of NaCl-Br and KCl-Br”, Geochim. Cosmochim. Acta, V. 50, pp. 1465–1474.Google Scholar
  108. Sverdrup, H. U.; Johnson, M. W.; Fleming, R. H. 1942. The Oceans, Prentice Hall, Englewood Cliffs, N.J., 1065 p.Google Scholar
  109. Usiglio, J. 1849. “Analyse de l’Eau de la Mediterranee sur les Cotes de France”, Annalen der Chemie, V. 27, pp. 92–107, 172–191.Google Scholar
  110. Valyashko, M. G. 1951. “Volume Relations of Liquid and Solid Phases in Evaporation of Sea Water”, Doklady Akad. Nauk SSSR, V. 77, No. 6, pp. 1055–1058.Google Scholar
  111. Valyashko, M. G. 1972. “Playa Lakes-A Necessary Stage in the Development of a Salt-Bearing Basin”, UNESCO, Geol. of Saline Deposits, pp. 41–51.Google Scholar
  112. Valyashko, M. G. et al. 1973. “Interactions of Calcium Chloride Brines with Sulfates in Halide Deposits”, Geochem. Int., V. 10, No. 4, pp. 912–919.Google Scholar
  113. Wardlaw, N. C. 1968. “Carnallite-Sylvite Relationships in the Middle Devonian Prairie Evaporite Formation, Saskatchewan”, Geol. Soc. Amer. Bull., V. 79, pp. 1273–1294.Google Scholar
  114. Wardlaw, N. C. 1970. “Effects of Fusion, Rates of Crystallization and Leaching on Bromide and Rubidium Solid Solutions in Halite, Sylvinite and Carnallite”, Third Symposium on Salt, V. 1, No. Ohio Geol. Soc., pp. 223–231.Google Scholar
  115. Wardlaw, N. C.; Schwerdtner, W. M. 1966. “Halite-Anhydrite Seasonal Layers in the Middle Devonian Praire Evaporite Formation, Saskatchewan, Canada”, Bull. Geol. Soc. Am., V. 77, No. 4, pp. 331–342.Google Scholar
  116. Wittrup, M. B.; Kyser, J. K. 1990. “The Petrogenesis of Brines in Devonian Potash Deposits of Western Canada”, Chemical Geology, V. 82, pp. 103–128.Google Scholar
  117. Zak, I. 1974. “Sedimentology and Bromine Geochemistry of Marine and Continental Evaporites in the Dead Sea Basin”, Fourth Int. Symp. on Salt, No. Ohio Geol. Soc., pp. 349–361.Google Scholar
  118. Zatenatskaya, N. N. et al. 1968. “Salt Content and Composition of Interstitial Water from Devonian Argillaceous Rocks Near the Starobin Potassium Salt Deposit”, Doklady Acad. Sciences USSR, V. 183, pp. 129–132 (Nov.-Dec).Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Donald E. Garrett
    • 1
    • 2
  1. 1.Saline Processors, Inc.OjaiUSA
  2. 2.University of CaliforniaSanta BarbaraUSA

Personalised recommendations