Skip to main content

Characterization of amplified DNA sequences in human cancers

  • Chapter
Chromosomes Today

Abstract

Gene amplification can be defined as an increase in the copy number of a restricted region of the genome. Originally discovered as a mechanism of drug resistance in cultured cell lines, it also occurs during tumourigenesis, more frequently in solid tumours than in hemopoietic malignancies (for review, Alitalo and Schwab, 1986; Schwab and Amler, 1990). Two types of chromosomal structures, the homogeneously staining regions (hsr) and double minute chromosomes (dmin), are currently regarded as hallmarks of gene amplification, hsr consist of chromosomal regions that fail to exhibit bands. They can vary in size and do not usually reside at the native locus of the amplified gene (Wahl, 1989). dmin are small paired acentric elements that replicate autonomously once per cell cycle and segregate randomly between daughter cells at mitosis (Wahl, 1989). Thus, unequal segregation of these structure provides means to increase the copy number of certain DNA sequences during a single cell cycle. Submicroscopic circular molecules, called episomes, were found in cells with amplified genes and might represent precursors of dmin (Carroll et al., 1988; Van Hoff et al., 1988; Wahl, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alitalo, K. and Schwab, M. (1986) Oncogene amplification in tumour cells. Advances in Cancer Research, 47, 235–81.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, A., Muleris, M., Dutrillaux, B. et al. (1994) The insulin-like growth factor I receptor gene is the target for the 15q26 amplicon in breast cancer. Genes, Chromosomes and Cancer, 11, 63–5.

    Article  CAS  Google Scholar 

  • Bishop, J.M. (1991) Molecular themes in oncogenesis. Cell, 64, 235–48.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, H.J.G. and Richardson, W.W. (1957) Histological grading and prognosis in breast cancer. British Journal of Cancer, 11, 359–66.

    Article  PubMed  CAS  Google Scholar 

  • Brison, O. (1993) Gene Amplification and tumour progression. Biochimica Biophysica Acta, 1155, 25–41.

    CAS  Google Scholar 

  • Bruderlein, S., Van der Bosch, K., Schlag, P. et al. (1990) Cytogenetics and DNA amplification in colorectal cancer. Genes, Chromosomes and Cancer, 2, 63–70.

    Article  CAS  Google Scholar 

  • Carroll, S.M., DeRose, M.L., Gaudray, P. et al. (1988) Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Molecular Cell Biology, 8, 1525–33.

    CAS  Google Scholar 

  • Fuller, G.N. and Bigner, S.H. (1992) Amplified cellular oncogenes in neoplasms of the human central nervous system. Mutation Research, 276, 299–306.

    PubMed  CAS  Google Scholar 

  • Hoff, D.D. von, Needham-Vandevanter, D.R., Yucel, J. et al. (1988) Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proceedings of the National Academy of Science USA, 85, 4804–5.

    Article  Google Scholar 

  • Human Gene Mapping 11 (1991) Cytogenetics and Cell Genetics, 58, 1–2200.

    Article  Google Scholar 

  • Joos, S., Scherthan, H., Speicher, M.R. et al. (1993) Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe. Human Genetics, 90, 584–9.

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi, A., Kallioniemi, O.P., Sudar, D. et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258, 818–21.

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi, A,, Kallioniemi, O.P., Piper, J. et al. (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proceedings of the National Academy of Science USA, 91, 2156–60.

    Article  CAS  Google Scholar 

  • Lemieux, N., Dutrillaux, B., Viegas-Pequignot, E. (1992) A simple method for simultaneous R- or G-banding and fluorescence in situ hybridization of small single-copy genes. Cytogenetics and Cell Genetics, 59, 311–2.

    Article  PubMed  CAS  Google Scholar 

  • Manoir, S. du, Speicher, M.R., Joos, S. et al. (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Human Genetics, 90, 590–610.

    Article  PubMed  Google Scholar 

  • Meltzer, P.S., Guan, X.Y., Burgess, A. et al. (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genetics, 1, 24–8.

    Article  PubMed  CAS  Google Scholar 

  • Muleris, M., Almeida, A., Dutrillaux, A.M. et al. (1994a) Oncogene amplification in human gliomas: a molecular cytogenetic analysis. Oncogene, 9, 2717–22.

    PubMed  CAS  Google Scholar 

  • Muleris, M., Almeida, A., Gerbault-Seureau, M. et al. (1994b) Detection of DNA amplification in 17 primary breast carcinomas with homogeneously staining regions by a modified comparative genomic hybridization. Genes, Chromosomes and Cancer, 10, 160–70.

    Article  CAS  Google Scholar 

  • Muleris, M., Almeida, A., Gerbault-Seureau, M. et al. (1995) Identification of amplified DNA sequences in breast cancer and their organization within homogeneously staining regions. Genes, Chromosomes and Cancer, 14, 155–63.

    Article  CAS  Google Scholar 

  • Roninson, I.B. (1983) Detection and mapping of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels. Nucleic Acids Research, 11, 5413–31.

    Article  PubMed  CAS  Google Scholar 

  • Saint-Ruf, C., Gerbault-Seureau, M., Viegas-Pequignot, E. et al. (1990) Proto-oncogene amplification and homogeneously staining regions in human breast carcinomas. Genes, Chromosomes and Cancer, 2, 18–26.

    Article  CAS  Google Scholar 

  • Schwab, M. and Amler, L.C. (1990) Amplification of cellular oncogenes: a predictor of clinical outcome in human cancer. Genes, Chromosomes and Cancer, 1, 181–93.

    Article  CAS  Google Scholar 

  • Shiloh, Y., Mor, O., Manor, A. et al. (1992) DNA sequences amplified in cancer cells: an interface between tumor biology and human genome analysis. Mutation Research, 276, 329–37.

    PubMed  CAS  Google Scholar 

  • Speicher, M.R., du Manoir, S., Schrsck, E. et al. (1993) Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification. Human Molecular Genetics, 2, 1907–14.

    Article  PubMed  CAS  Google Scholar 

  • Trent, J., Meltzer, P., Rosenblum, M. et al. (1986) Evidence for rearrangement, amplification, and expression of c-myc in a human glioblastoma. Proceedings of the National Academy of Science USA, 83, 470–3.

    Article  CAS  Google Scholar 

  • Tumor Node Metastasis—Union Internationale Contre le Cancer. TNM—Atlas (1982) Illustrated Guide to the TNM/pTNM Classification of malignant tumours, 2nd Ed., B. Spiesse, P. Hermanek, O. Scheibe, G. Wagner, eds. New York, NY Springer Verlag, Berlin.

    Google Scholar 

  • Wahl, G.M. (1989) The importance of circular DNA in mammalian gene amplification. Cancer Research, 49, 1333–40.

    PubMed  CAS  Google Scholar 

  • WHO (1981) Classification histologique internationale des tumeurs types histologiques des tumeurs du sein N2, 2nd Ed. Organisation Mondiale de la Santé, Genéve.

    Google Scholar 

  • Wullich, B,, Mÿller, H.W., Fischer, U. et al. (1993) Amplified met gene linked to double minutes in human glioblastoma. European Journal of Cancer, 14, 1991–95.

    Article  Google Scholar 

  • Zhang, J., Trent, J.M. and Meltzer, P.S. (1993) Rapid isolation and characterization of amplified DNA by chromosome microdissection: identification of IGF1R amplification in malignant melanoma. Oncogene, 8, 2827–31.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 The Organizing Committee of the 12th International Chromosome Conference, Madrid, Spain

About this chapter

Cite this chapter

Muleris, M., Almeida, A., Gerbault-Seureau, M., Dutrillaux, A.M., Malfoy, B., Dutrillaux, B. (1997). Characterization of amplified DNA sequences in human cancers. In: Henriques-Gil, N., Parker, J.S., Puertas, M.J. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1537-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1537-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7186-4

  • Online ISBN: 978-94-009-1537-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics