Skip to main content

Microbial symbioses in the midgut of insects

  • Chapter
Biology of the Insect Midgut

Abstract

Micro-organisms are ubiquitous, and the guts of animals are particularly favoured sites for microbial colonization. Gut symbionts are those micro-organisms which persist for extended periods in the intestinal tract. They may be located in the lumen of the gut, associated with the gut wall or in the animal cells lining the gut. Animal guts also bear ‘transients’, i.e. micro-organisms that gain access with food but are killed (e.g. by digestive enzymes) or pass out with the faeces. Although the distinction between transients and the resident gut symbionts may be blurred in some systems, the difference can be illustrated by the study on Escherichia coli in the gut of, not an insect, but a single human (research scientist) (Caugant et al., 1981). Of the 54 electrophoretic variants of E. coli identified, only two persisted for the full 11 months of the study and the remainder had a maximal residence time of 5 days. These are the resident gut symbionts and the transients, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksoy, S. (1995) Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol. Biol., 4, 23–9.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy, S., Pourhosseini, A.A. and Chow, A. (1995) Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae. Insect Mol. Biol., 4, 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Baines, S. (1956) The role of the symbiotic bacteria in the nutrition of Rhodnius prolixus (Hemiptera). J. Exp. Med., 33, 533–41.

    CAS  Google Scholar 

  • Beard, C.B., Mason, P.W., Aksoy, S. et al. (1992) Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. Am. J. Trop. Med. Hyg., 46, 195–200.

    CAS  Google Scholar 

  • Beard, C.B., O’Neill, S.L., Mason, P. et al. (1993a) Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Mol. Biol., 1, 123–31.

    Article  PubMed  CAS  Google Scholar 

  • Beard, C.B., O’Neill, S.L., Tesh, R.B. et al. (1993b) Modification of arthropod vector competence via symbiotic bacteria. Parasitol. Today, 9, 179–83.

    Article  PubMed  CAS  Google Scholar 

  • Beckage, N.E., Thompson, S.N. and Federici, B.A. (eds) (1993a) Parasites and Pathogens of Insects Vol. 1, Parasites, Academic Press, San Diego, CA.

    Google Scholar 

  • Beckage, N.E., Thompson, S.N. and Federici, B.A. (eds) (1993b) Parasites and Pathogens of Insects Vol. 2, Pathogens, Academic Press, San Diego, CA.

    Google Scholar 

  • Bigneil, D.E., Oskarsson, H. and Anderson, J.M. (1980) Colonisations of the epithelial face of the peritrophic membrane and the ectoperitrophic space by actinomycetes in a soil-feeding termite. J. Invertebr. Pathol., 36, 426–8.

    Article  Google Scholar 

  • Bismanis, J.E. (1976) Endosymbionts of Sitodrepa panicea. Can. J. Microbiol., 22, 1415–24.

    Article  PubMed  CAS  Google Scholar 

  • Brecher, G. and Wigglesworth, V.B. (1944) The transmission of Actinomyces rhodnii Erikson in Rhodnius prolixus Stal (Hemiptera) and its influence on the growth of the host. Parasitology, 35, 220–4.

    Article  Google Scholar 

  • Buchner, P. (1965) Endosymbiosis of Animals with Valant Microorganisms, Wiley, London.

    Google Scholar 

  • Caugant, D.A., Levin, B.R. and Seiander, R.K. (1981) Genetic diversity and temporal variation in the Escherichia coli population of a human host. Genetics, 98, 467–90.

    PubMed  CAS  Google Scholar 

  • Cavanagh, P. and Marsden, P.D. (1969) Bacteria isolated from the gut of some reduviid bugs. Trans. R. Soc. Trop. Med. Hyg., 63, 415–16.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, A.E. (1996) The ecology of symbiotic micro-organisms. Adv. Ecol. Res., (in press).

    Google Scholar 

  • Drew, R.A.I. and Lloyd, A.C. (1991) Bacteria in the life cycle of tephritid fruit flies, in Microbial Mediation of Plant-Herbivore Interactions (eds P. Barbosa, V.A. Krischik and C.G. Jones), Wiley, London, pp. 441–65.

    Google Scholar 

  • Fraenkel, G. and Blewitt, M. (1943) Intracellular symbionts of insects as a source of vitamins. Nature, 152, 506–7.

    Article  CAS  Google Scholar 

  • Gumpert, J. and Schwartz, W. (1962) Untersuchungen uber die symbiose von tieren mit pilzen und bakterien, X. Die symbiose der triatominen 1. Aufzucht symbiontenhaltiger und symbiontenfreier triatominen und eigenschaften der bei triatominen vorkommenden mikroorganismen. Z. Allg. Mikrobiol., 2, 209–302.

    Article  Google Scholar 

  • Haas, F. and Konig, H. (1987) Characterisation of an anaerobic symbiont and the associated aerobic bacterial flora of Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). FEMS Microbiol. Ecol., 45, 99–106.

    CAS  Google Scholar 

  • Howard, D.J. and Bush, G.L. (1989) Influence of bacteria on larval survival and development in Rhagoletis (Diptera: Tephritidae). Ann. Entomol. Soc. Am., 82, 633–40.

    Google Scholar 

  • Huebner, E. and Davey, K.G. (1974) Bacteroids in the ovaries of the tsetse fly. Nature, 249, 260–1.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, L. (1993) The incidences, mechanisms and evolution of cytoplasmic sex ratio distorters in animals. Biol. Rev., 68, 121–93.

    Article  Google Scholar 

  • Jadin, J. (1967) Du role des bacteries dans le tube digestif des insectes vecterus des plasmodidae et des trypanosomidae. Ann. Soc. Belge Med. Trop., 47, 331–42.

    PubMed  CAS  Google Scholar 

  • Jurzitza, G. (1979) The fungi symbiotic with anobiid beetles, in Insect Fungal Symbiosis (ed. L.R. Batra), Wiley, New York.

    Google Scholar 

  • Kiefer, H. (1932) Der Einfluss von Kalte und Hunger aud die Symbionten der Anobiiden- und Cerambycidenlarven. Zentralhl Bakteriol., 86.

    Google Scholar 

  • Koch, A. (1960) Intracellular symbiosis in insects. Annu. Rev. Microbiol., 14, 121–40.

    Article  PubMed  CAS  Google Scholar 

  • Luthy, P.D., Studer, D., Jaquet, F. and Yamvrias, C. (1983) Morphology and in vitro cultivation of the bacterial symbiote of Dacus oleae. Schweiz Entomol. Geschalt, 56, 67–72.

    Google Scholar 

  • Maudlin, I. (1991) Transmission of African trypanosomiasis: interactions among tsetse immune systems, symbionts and parasites, in Advances in Disease Vector Research (ed. K.F. Harris), Springer, New York, pp. 117–48.

    Google Scholar 

  • Maudlin, I. and Welburn, S.C. (1988) Tsetse immunity and the transmission of trypanosomiasis. Parasitol. Today, 4, 109–11.

    Article  PubMed  CAS  Google Scholar 

  • Muhlpfordt, V.H. (1959) Der einfluss der darmsymbionten von Rhoxnius prolixus auf Trypanosoma cruzi. Z. Tropenmed. Parasitol., 10, 314–27.

    Google Scholar 

  • Nogge, G. (1976) Sterility in tsetse fly (Glossina morsitans Westwood) caused by loss of symbionts. Experientia, 32, 995.

    Article  PubMed  CAS  Google Scholar 

  • Nyirady, S.A. (1973) The germfree culture of three species of Triatominae: Triatoma protracta (Uhler), Triatoma rubida (Uhler), and Rhodnius prolixus Stal. J. Med. Entomol., 10, 417–48.

    PubMed  CAS  Google Scholar 

  • O’Neill, S.L., Giordana, R., Colbert, A.M.E. et al. (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl Acad. Sci. USA, 89, 2699–702.

    Article  PubMed  Google Scholar 

  • O’Neill, S.L., Gooding, R.H. and Aksoy, S. (1993) Phylogenetically distant symbiotic micro-organisms reside in Glossina midgut and ovary tissues. Med. Vet. Entomol., 7, 377–83.

    Article  PubMed  Google Scholar 

  • Olsen, G.J., Woese, C.R. and Overbeck, R. (1994) The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol., 176, 1–6.

    PubMed  CAS  Google Scholar 

  • Pell, P.E. and Southern, D.I. (1975a) Symbionts in the female tsetse fly Glossina morsitans morsitans (Dipt. Glossinidae). Experientia, 31, 650–1.

    Article  PubMed  CAS  Google Scholar 

  • Pell, P.E. and Southern, D.I. (1975b) Maternal transmission of symbiotic bacteroids in Glossina morsitans morsitans. Trans. R. Soc. Trop. Med. Hyg., 169, 283.

    Google Scholar 

  • Pinnock, D.E. and Hess, R.T. (1974) The occurrence of intracellular rickettsia-like organisms in the tsetse flies, Glossina morsitans, G. fuscipes, G. brevipalpis and G. pallidipes. Acta Trop., 31, 70–9.

    PubMed  CAS  Google Scholar 

  • Reinhardt, C., Steiger, R. and Hecker, H. (1972) Ultrastructural study of the midgut mycetome-bacteroids of the tsetse flies Glossina morsitans, G. fuscipes and G. brevipalpis (Diptera, Brachycera). Acta Trop., 29, 280–8.

    PubMed  CAS  Google Scholar 

  • Richards, F.F. (1993) An approach to reducing arthropod vector competence. Am. Soc. Microbiol. News, 59, 509–14.

    Google Scholar 

  • Sapp, J. (1994) Evolution by Association, Oxford University Press, New York.

    Google Scholar 

  • Steinhaus, E.A. (1946) Insect Microbiology, Comstock Publishing, Ithaca.

    Google Scholar 

  • Welburn, S.C., Arnold, K., Maudlin, I. and Gooday, G.W. (1993) Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitology, 107, 141–5.

    Article  PubMed  Google Scholar 

  • Welburn, S.C., Maudlin, I. and Ellis, D.S. (1987) In vitro cultivation of rickettsia-like organisms from Glossina spp. Ann. Trop. Med. Parasitol., 81, 331–5.

    PubMed  CAS  Google Scholar 

  • Welburn, S.C., Maudlin, I. and Molyneux, D.H. (1994) Midgut lectin activity and sugar specificity in teneral and fed tsetse. Med. Vet. Entomol., 8, 81–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Douglas, A.E., Beard, C.B. (1996). Microbial symbioses in the midgut of insects. In: Lehane, M.J., Billingsley, P.F. (eds) Biology of the Insect Midgut. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1519-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1519-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7179-6

  • Online ISBN: 978-94-009-1519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics